Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Welcome</td>
<td>7</td>
</tr>
<tr>
<td>Career Opportunities</td>
<td>8</td>
</tr>
<tr>
<td>Contact Information</td>
<td>9</td>
</tr>
<tr>
<td>Academic Staff</td>
<td>10</td>
</tr>
<tr>
<td>Non Academic Staff</td>
<td>17</td>
</tr>
<tr>
<td>Equipment and Facilities</td>
<td>21</td>
</tr>
<tr>
<td>Code of Conduct for Laboratories</td>
<td>24</td>
</tr>
<tr>
<td>Life at the Department of Electronic and Telecommunication Engineering</td>
<td>25</td>
</tr>
<tr>
<td>Curriculum and Modules</td>
<td>27</td>
</tr>
<tr>
<td>Academic Standards and Administrative Processes for Students</td>
<td>123</td>
</tr>
<tr>
<td>Graduation Checklist</td>
<td>124</td>
</tr>
<tr>
<td>Research at ENTC</td>
<td>125</td>
</tr>
<tr>
<td>E-Club</td>
<td>131</td>
</tr>
<tr>
<td>Awards Available to Students</td>
<td>133</td>
</tr>
<tr>
<td>Student Recommandation Criteria</td>
<td>135</td>
</tr>
<tr>
<td>Web Sites</td>
<td>136</td>
</tr>
<tr>
<td>Alumni Support</td>
<td>137</td>
</tr>
<tr>
<td>Achievements of ENTC Students</td>
<td>138</td>
</tr>
<tr>
<td>Competitions Available for ENTC Students</td>
<td>139</td>
</tr>
<tr>
<td>Industry Collaboration</td>
<td>142</td>
</tr>
<tr>
<td>Other Useful Information</td>
<td>145</td>
</tr>
<tr>
<td>Floor Plan</td>
<td>148</td>
</tr>
</tbody>
</table>
Welcome to the Department of Electronic and Telecommunication Engineering. In this handbook, you will find information about your undergraduate program at the department. This will be a source of information about the department, the areas of expertise and contact details of the faculty, and the laboratories and facilities available to you. This will help you to plan your degree by selecting courses, and undertaking projects and other activities to fulfill the graduation requirements. You will also find information about scholarships, student clubs and career opportunities. We invite you to make the fullest use of the facilities available at the department and wish you a pleasant and fruitful stay.
Handbook designing and typesetting
Tharaka Madhushani Perera

Cover page theme design
Nipun Perera

Content Updated by
Dulara De Zoysa, Wageesha Manamperi, Asanka Rathnayaka

http://www.ent.mrt.ac.lk
Introduction

In the Department of Electronic and Telecommunication Engineering, in the University of Moratuwa, we continue to draw from our heritage of excellence, and exceptional teaching, research and laboratory facilities. With a legacy of 50 years, the department steadily provides innovation that impacts the nation.

We produce multi-faceted electronic, telecommunication and biomedical engineering graduates who are ready to take up challenges nationally and internationally. We conduct two four-year Bachelor of Science of Engineering Honors Degree Programs, two taught Postgraduate Master of Science Programs and several Postgraduate Research Programs leading to MSc, M.Phil and PhD degrees. Currently, there are approximately 400 undergraduate students enrolled in our programs.

The department is housed in the majestic four-storied building in the east-side of the University and has nine laboratories with facilities for students to carry out laboratory assignments and project work. In addition, the Department has forged strong links with the industry in order to promote collaborative work. As a result, there are three additional industry-sponsored laboratories setup as joint ventures between the University of Moratuwa and Dialog Axiata, Zone24x7 and Premium International. Dedicated for research, these laboratories make significant contributions to the growth of the electronic and telecommunication industries.

Department Mission

“Impart and improve the theoretical knowledge and practical skills of students in Electronic and Telecommunication Engineering, keeping pace with the rapid developments while significantly contributing to the wealth of knowledge by way of high quality research.”
The department recently established an Advanced Electronic Product Development Centre which provides EDA tools at a concessionary rate for the companies engaged in IC design and electronic manufacturing. Development in the Electronics, Telecommunication and Biomedical Engineering fields worldwide make it one of the most fast-changing, challenging and coveted specializations of engineering.

In addition to academic and research work, the department provides consultancy services to many government institutions in the fields of education, science and technology, and national security.

Study Programmes on Offer

Undergraduate Programmes
- Bachelor of Science of Engineering Honours Degree in Electronic and Telecommunication Engineering
- Bachelor of Science of Engineering Honours Degree in Biomedical Engineering

Postgraduate Programmes (Taught)
- Master of Science/Postgraduate Diploma in Telecommunications
- Master of Science/Postgraduate Diploma in Electronics & Automation

Postgraduate Programmes (Research)
- Master of Science
- Master of Philosophy
- Doctor of Philosophy

Short Courses
- Training Course on Microcontroller Based System Design
- Training Course on Industrial Automation and PLCs
- Training Program on Photovoltaic (PV) Power Conversion Systems
Welcome

Welcome to the Department of Electronic and Telecommunication Engineering. Since 1969 talented students like you have walked the path that you are about to embark on. Conscientious academic work that lays a thorough foundation of principles, creativity, real-world problem solving, technology leadership, extra-curricular activities, and professionalism will make you reach the goals that your predecessors achieved.

In doing so, you will become either a professional engineer, an achiever who would lead organizations, or a technology leader who would champion novel technologies. All these are for the benefit of the citizens of our country and the body of knowledge that drives the world. In view of this, I wish you strength and determination to fully engage with the program that we offer with an outlook that reaches the real world of engineering.

There are two Bachelor of the Science of Engineering programs that we offer: Electronic and Telecommunication Engineering, and Biomedical Engineering. In each program, you will start with the fundamental theoretical concepts in the early semesters, leading to system-level knowledge and skills in the final semesters. I encourage you to see each course module as a building block of the structure that would make you an engineering scientist. When following such a course module, you must inquire on your own how it would fit in this large structure. Try to make connections between the course module at hand and what you have already learnt. Ask questions as to how this would make you one of the engineers--- a professional, an achiever, or a technology leader--- when you join the world of work or research. The course modules and the program itself will become meaningful and enjoyable if you adopt the mindset that I just described.

There is a faculty of highly talented and resourceful academics in the department to make your stay meaningful and fruitful. The main tasks the academic staff members have to do are teaching to share with you the knowledge that they have, carrying out research to contribute to the body of knowledge, and some administrative work. All these will benefit you. Your level of engagement in the knowledge dissemination process—preparation at home, active participation in lectures—will encourage them be more enthusiastic in teaching you. Your keen interest in discussions outside the classroom and contribution to research projects that they manage will pave the way for you to start research-oriented work. Fully benefitting from the teaching, and engaging in research work with academic staff members will mould you into the engineer who would be fruitful in the society.

Toward this goal of making your mark in the society, you must identify your key performance indicators. I can suggest you some: a good grade-point average supplemented by extra-curricular work and sports, research publications in good conferences and journals, making relationships with academic staff members and industry, and having a spectacular curriculum vitae that lists a number of industry- and research-relevant skills and significant projects. The department, its facilities, academic and non-academic staff members are there to assist you in achieving these performance targets.

Along with the staff of the department, I wish you all the best in reaching these targets and becoming the engineer--- a professional, an achiever, or a technology leader--- that you are determined to become.

Dr. Nuwan Dayananda
Head of Department
Career Opportunities

The competitive environment prevailing in the electronics, telecommunication and IT industry has resulted in the rapid deployment of advanced technologies in Sri Lanka. Consequently, challenging and lucrative career opportunities have become available to Electronic, Telecommunication and Biomedical engineers.

Our program will equip the students with the knowledge and skills necessary to excel in all these areas. The blend of diverse and multidisciplinary areas taught in our program makes it one of the fastest changing and challenging specializations of engineering.

Over the last decade, large networks of cellular, satellite and data communication have been introduced to the country, providing state-of-the-art services. Organizations providing traditional communication services are expanding, incorporating modern technologies into their systems. Telecommunication engineers have the opportunity of building their future careers within these organizations. Our graduates have found employment in every aspect of the telecommunication industry, from network planning to business and management related areas. With the recent trends in the telecommunication industry to look beyond voice to data services, new markets based on value added services are taking center stage. Our graduates will find new markets in these areas with their innovative thinking and excellent programming skills.

The manufacture and process industries are becoming increasingly sophisticated with the adoption of advanced automation methods. They provide challenging opportunities for more electronics-oriented careers. In the global context more telecommunications, consumer, computer, industrial and automotive products are evolving toward embedded, system-on-chip design and development models related to these technologies. Our graduates will, in the future, play a major role in the global embedded electronics design chain as well.

The software industry in Sri Lanka is rapidly expanding. An increasing number of our graduates have found a firm footing in this market. With the advent of technologies such as cloud computing and smart phones many of the companies are moving towards telecommunication related software development. These markets are held by our graduates.

The department has diversified its electronics and automation fields to include internet of things, hardware acceleration, robotics and computer vision.

One of the key success factors of the department is its ability to be proactive about the needs of the industry. We have always maintained a close and cordial relationship with the industry which has benefited our undergraduates and graduates immensely. The industry has been our partner in creating an employable graduate. The constructive comments made by these eminent people have shaped the manner in which the teaching and learning process has been carried out within the department.

This close corporation has enabled our undergraduates to be aware of the expectations of the industry well before they graduate. This collective effort has enabled our graduates to identify, prepare and embark on a career of their choice even before graduation.
Where is the Department Located?

The Department of Electronic & Telecommunication Engineering is located next to the statue of the Lord Buddha in the University of Moratuwa.

Contact Information:
Department of Electronic and Telecommunication Engineering,
Faculty of Engineering,
University of Moratuwa,
Katubedda,
Moratuwa 10400,
Sri Lanka

E-mail: info@ent.mrt.ac.lk
Web: www.ent.mrt.ac.lk

Head of the Department:
Dr. N. W. N. Dayananda
E-mail: head-entc@uom.lk

Department Office Contact Person:
Mr. T.D.C. Peiris
Clerk

Tel: +94-11-2650301 Ext. 3300
Fax: +94-11-26506055

Perennial advancement in computers does not seem to be able to keep up with today's computational demand of video-processing, deep-network, and data-science needs. We are familiar with the evolution of computer hardware through vacuum tubes, transistors, ICs, microprocessors, and GPUs. Yet, the trend does not stop there. Reconfigurable computing has flourished during the last several decades with the inception of Field Programmable Gate Arrays (FPGAs). The capabilities of FPGAs and GPUs outperform the traditional single-core or multi-core processors with respect to raw compute power, accuracy of arithmetic and power consumption.

These technologies have the potential to replace the core of a variety of computation and hardware intensive systems in machine vision, communications, artificial intelligence, biomedical engineering, and defense applications. In some cases, especially in deep learning applications, raw compute power of FPGAs has proven to outclass GPU-based systems by reducing memory bottlenecks. Reconfigurability of FPGAs offers the flexibility for the engineers to use the full range of data type precisions, which is limited in GPUs by architecture. The low power consumption and the efficiency are well-known traits in FPGAs over power-hungry GPUs. Whatever the platform is, intensive computing systems are of great importance today.

The department offers a rigorous theoretical background and opportunities for research in vision and learning-related computing. The students can begin from implementing simple image processing functions to current applications in deep learning, communication, and machine vision.

Our commitment to enriching the electronics industry in Sri Lanka in these areas makes our presence felt in the global arena.
Academic Staff

Head of the Department

Dr. Nuwan Dayananda
B.Sc.Eng. (Moratuwa), M.E.Sc.(Western, Canada), Ph.D. (Western Ontario), MIEEE, MEMBS
Ext. No.: 3301
E-mail: head-entc@uom.lk

Professor Emeritus

Vidya Jyothi Prof. K.K.Y.W. Perera
B.Sc. (Cey), M.Sc. (Birm.), Ph.D. (Br.Col.), CEng., FIEE (Lond.), FIE (SL), Fellow, National Academic of Sciences
Room No: EB 117
Ext. No.: 3307
e-mail: kkywp@ent.mrt.ac.lk

Professors

Prof. Kapila Jayasinghe
B.Sc.Eng. (Moratuwa), MEE (Netherlands), Ph.D. (Netherlands), C. Eng, MIE (SL)
Room No: EB 116
Ext. No.: 3306
e-mail: jaks@ent.mrt.ac.lk

Prof. (Mrs.) Dileeka Dias
BSc.Eng. (Moratuwa), M.S. (Calif.), Ph.D. (Calif), C. Eng., MIE (SL), MIEEE
Room No: EB 118
Ext. No.: 3320
e-mail: dileeka@ent.mrt.ac.lk

http://www.ent.mrt.ac.lk
Prof. Rohan Munasinghe
B.Sc.Eng. (Moratuwa), M Sc. (Saga), Ph.D. (Saga), SMIEEE
Room No: EB 119
Ext. No.: 3309
e-mail: rohan@uom.lk

Senior Lecturers

Eng. Kithsiri Samarasinghe
B.Sc.Eng. (Moratuwa), MBA (Sri J), C.Eng, MIE (SL)
Room No: EB 210
Ext. No.: 3326
e-mail: kithsiri@ent.mrt.ac.lk

Dr. Ajith Pasqual
B.Sc.Eng. (Moratuwa), M.Eng. (Tokyo), Ph.D. (Tokyo), MIEEE, MACM
Room No: EB 214
Ext. No.: 3321
e-mail: pasqual@ent.mrt.ac.lk

Dr. Ranga Rodrigo
B.Sc.Eng. (Moratuwa), M.E.Sc. (Western, Canada), Ph.D. (Western, Canada), MIEEE
Room No: EB 111
Ext. No.: 3315
e-mail: ranga@uom.lk

Dr. Jayathu Samarawickrama
B.Sc.Eng. (Moratuwa), M.Sc. (Moratuwa), Ph.D. (UNIGE and IIT, Italy), MIEEE
Room No: EB 212
Ext. No: 3324
e-mail:jayathu@ent.mrt.ac.lk

Dr. Thayaparan Subramaniam
B.Sc.Eng. (Peradeniya), Ph.D. (HKU)
Room No: EB 211
Ext. No: 3322
e-mail: thayaparan@ent.mrt.ac.lk
Dr. Ruwan Weerasooriya
B.Sc.Eng. (Moratuwa), M.Sc. (Nottingham), Ph.D. (UCC and TNI).
Room No: EB 109
Ext.No: 3313
e-mail:ruwan@ent.mrt.ac.lk

Dr. Mevan Gunawardena
B.Sc.Eng. (Moratuwa), M.Sc. (Purdue), Ph.D (Purdue)
Room No: EB 114
Ext.No: 3317
e-mail: mevang@uom.lk

Dr. Tharaka Samarasinghe
B.Sc.Eng. (Moratuwa), Ph.D. (Melbourne)
Room No: EB 209
Ext.No: 3323
e-mail:tharaka@ent.mrt.ac.lk

Dr. Anjula De Silva
B.Sc.Eng. (Moratuwa), Ph.D. (Swinburne)
Room No: EB 216
Ext.No: 3319
e-mail:anjula@ent.mrt.ac.lk

Dr. Pujitha Silva
B.Sc.Eng. (QuT), Ph.D.(UoQ)
Room No: EB 213
Ext.No: 3325
e-mail:pujitha@ent.mrt.ac.lk

Dr. Upeka Premaratne
B.Sc. Eng. (Moratuwa) M.E.Sc. (Western, Canada), Ph.D. (Melbourne)
Room No: EB 203
Ext.No: 3327
e-mail:upeka@uom.lk

http://www.ent.mrt.ac.lk
Lecturers

Mr. Thilina Ambagahawaththa
B.Sc. Eng. (Moratuwa),
e-mail: thilinaa@uom.lk

Ms. Wageesha Manamperi
B.Sc. Eng. (Moratuwa), M.Sc. (Moratuwa)
e-mail: wageesham@uom.lk

Mr. Janith Kalpa Gunarathne
B.Sc. Eng. (Moratuwa)
e-mail: janith@ent.mrt.ac.lk

Mr. Dulara De Zoysa
B.Sc. Eng. (Moratuwa)
e-mail: dularaz@uom.lk

Mr. Asanka Rathnayaka
B.Sc. Eng. (Moratuwa)
e-mail: asankai@uom.lk

Mr. Nipun Dilesh Perera
B.Sc. Eng. (Moratuwa)
e-mail: nipund@uom.lk

http://www.ent.mrt.ac.lk
Mr. Madhura Pankaja Pathegama
B.Sc.Eng. (Moratuwa)
e-mail: madhurapankaja@gmail.com

Visiting Lecturers

Dr. Chamari Hettiarchachi
B.Sc. Sp. Botany (Colombo), Ph.D. (JNU, New Delhi)

Dr. Deshantha Pathinayake
MBBS (SJ), PG DFM (Colombo)

Mr. Kalana De Silva
B.Sc. Eng. (Moratuwa)

Mr. Salinda Tennakoon
B.Sc. Eng. (Moratuwa)

Eng. P.S.L. Fernando
B.Sc.Eng. (Moratuwa), M.Eng. (Moratuwa), C.Eng. (UK), MIE (SL), MIET (UK), MIEEE (USA)

Consultant

Ms. S. M. Salgado
BA in English & ELT (OUSL), BA in Social Sciences (OUSL), P.G. DE (TESL - Colombo), MA in Linguistics (Kelaniya), M. Ed (OUSL)
Ext.No.: 3307
e-mail: srianthie.salgado@gmail.com
Instructors

Mr. P.D.R. Lalantha
B.Sc.Eng. (Moratuwa)

e-mail: roshanl@mrt.ac.lk

Ms. Vaishnavy Paramanathasivam
B.Sc.Biotechnology(Bangalore)

e-mail: vaishnavy1920@gmail.com

Ms. Tharaka Madhushani Perera
BEng.(Hons) (UK), MSc.(UK)

e-mail: tharakap@uom.lk

Mr. Pasan Premathilaka
B.Sc.Eng. (NAU Ukraine)

e-mail: pdpasan@gmail.com

Ms. Hasini Deshika Wickramasinghe
B.Sc.Eng. (Ruhuna)

e-mail: hasiniw@uom.lk

Academic Support Staff

Mr. K.D.D. Lakmal
Programmer Cum Systems Analyst Grade II

Extension: 3348
email: damithk@ent.mrt.ac.lk
Non Academic Staff

Technical Staff

Mr. S.E.Jeninghas
Staff Technical Officer grade I
Digital Electronics Laboratory

Mr. R.A.C.A.K. Ranawaka
Technical Officer
PG Lab
Ext. No.: 3357

Mr. W. N. P. Fernando
Technical Officer
Optoelectronics Laboratory

Mr. A.M.A.W.C. Dissanayake
Technical Officer
Computer lab, Analog Laboratory
Ext. No.: 3356
e-mail: wedithad@uom.lk
Mr. S.N.T.M. Wickramasinghe
Technical Officer
Microwave Lab, Radiation engineering lab
Ext. No.: 3360

Mrs. N. G. S. R. Narayana
Technical Officer
Telecom Laboratory, BME laboratory
Ext. No: 3358
e-mail: ranganij@uom.lk

Mr. D.S. Chinthaka
Technical Officer
IML
Ext. No: 3363

Mr. Sanjeewa Fernando
Technical Officer
Electronic Workshop
Ext. No.: 3351

Office Staff

Mr. T.D.C. Peiris
Clerk
Ext. No.: 3300
e-mail: dihan1984@ent.mrt.ac.lk

Mr. M. Thushara Dhammika
Machine Operator
Ext. No.: 3300

http://www.ent.mrt.ac.lk
Mr. H.M.K. Fernando
Labourer
Ext. No.: 3300

Mr. K.A.M. Prasanna
Labourer

Electronics Workshop Staff

Mr. M.A.A.K. Gunawardana
Electronic Equipment Repairman
Ext. No.: 3351

Mr. S.A.C.S. Muthukumarana
Electronic Equipment Repairman
Ext. No.: 3351

Laboratory Support Staff

Mr. K.C.P. Ferdinando
Laboratory Attendant
Computer lab, Digital lab

Mr. C.A. Kaluarachchi
Laboratory Attendant
Analog Lab
e-mail: chaminda@ent.mrt.ac.lk
Mr. U.M.M. Wickramaratne
Laboratory Attendant
UAV Laboratory

Mr. M. G. N. Peiris
Laboratory Attendant
Telecom Lab

Mr. D. S. S. Perera
Laboratory Attendant
Microwave Lab
Equipment and Facilities

Analog Electronics Laboratory

Analog electronics laboratory provides students a basic understanding of electronic circuits, characteristics of electronic devices and aids in the art of recording data. It houses a variety of test equipment including oscilloscopes, signal generators, counters, digital multimeters and power supplies. Projects and other activities carried out in the laboratory include the analysis and design of circuits utilizing both passive and active devices such as resistors, capacitors, inductors, diodes and bipolar junction and field effect transistors.

*Technical Officer: Mr. A.M. Dissanayake
Extension: 3356*

Computer Laboratory

The Department computer laboratory consists of over 20 personal computers for students and many servers for services and advanced computing. The local area network links all the laboratories and staff rooms and has internet facility through the university/LEARN network. Each student has a user profile and an e-mail account which can be accessed from anywhere through secure shell. The computer laboratory is used by the undergraduate students for their assignments project work, internet browsing, e-mail and other computational needs. The entire department including class rooms is covered by a wireless network.

*Technical Officer: Mr. S.E.Jeninghas
Extension: 3348*

Digital Electronics/Project Laboratory

This laboratory gives students hands-on experience with microprocessor hardware, software design concepts, their applications and provides facilities to investigate the architecture of microprocessors and associated systems. Students working in this laboratory utilize Hewlett-Packard design/development systems, logic analyzers, programmable logic development systems, and microprocessor trainers. A variety of advanced test equipment such as digital storage oscilloscopes, digital multimeters and PC coupled instrumentation are available for testing. The digital electronics/project laboratory provides facilities for automatic testing of electronic circuit design and study of environmental effects on circuit and component operation.

*Technical Officer: Mr. S.E.Jeninghas
Extension: 3380*
Microwave Laboratory

The microwave laboratory is used for the design and implementation of microwave communication systems that are used in the industry. Students working in this lab have the opportunity to learn the concepts of design and applications through hands-on experience. The laboratory experience is devoted to microwave generation, transmission and reception. Students will construct circuits that will demonstrate the basic principals involved in communications. Standard electronic instruments are used for construction and adjustment of various projects.

Technical Officer: Mr. S.N.T.M. Wickramasinghe
Extension: 3352

Postgraduate Laboratory

The Postgraduate laboratory is equipped with a variety of modern industrial devices and equipment such as logic analyzers, network analyzers and spectrum analyzers. Industry instrument testing, designing and consultancy services are done in this laboratory. This laboratory is mainly used by the postgraduate students to carry out their research work.

Technical Officer: Mr. R.A.C. Ranawaka
Extension: 3360

Intelligent Machines Laboratory and UAV Research Laboratory

This laboratory is mainly used to handle robotics and automation related activities. It houses development boards for power devices, micro-controller testing and other devices such as a multitude of sensors and mechanical equipment. The laboratory sponsors many national and international robotics competitions. The laboratory space has been recently expanded to include research related to Unmanned Aerial Vehicles (UAVs).

Technical Officer: Mr. D.S. Chinthaka
Extension: 3360

Telecommunication Laboratory

This laboratory provides students an understanding of the basic concepts of communication circuits to achieve modulation and detection of radio signals. Students will construct circuits that will demonstrate the basic principals involved in communications. Standard electronic instruments are used in construction and adjustment of the various projects. The telecommunication laboratory is equipped with most of the modern equipment in the telecommunication field. A sweep generator test bench is available to measure single tuned and double tuned amplifiers. Spectrum analyzers are used to measure amplitude and frequency modulation. Students can utilize the wireless and land telephone systems implemented inside the laboratory for their studies.

Technical Officer: Mrs. N.G.S. Narayana
Extension: 3358

Opto Electronic Laboratory

This laboratory is mainly used by the semester 7 and semester 8 students to conduct experiments related to optical fiber communications. It houses many advanced equipment such as optical spectrum analyzers and OTDRs. This laboratory has the facilities to check, calibrate and design optical communication equipment. This laboratory is also used by the undergraduates to carry out their final year projects.

Technical Officer: Mr. S.N.T.M. Wickramasinghe
Extension: 3352
Wet Experiment Laboratory

The Wet Experiment Laboratory was formed in 2015 to provide undergraduate and postgraduate students the opportunity to do multi-disciplinary experiments that involve fluids. These include the application of electronics and control concepts to fluid processes. It also facilitates the study of biological organisms for biotechnology and biomimetic innovation in electronics, automation and robotics. The projects carried out are mainly self-innovation projects, undergraduate research projects, final year projects and postgraduate research projects. Relevant laboratory classes on industrial automation and control theory are also conducted in this lab.

*Technical Officer: Mr. D.S. Chinthaka
Extension: 3360*

Electronic Workshop

With experienced engineers and technicians, and equipped with modern facilities, the electronic workshop provides a great support for undergraduate studies and projects. Students utilize the workshop to get hands on experience in good soldering practice and to build and test circuits for project work. Instruments available in the workshop include winding machines, oscilloscopes, de soldering stations, PCB drilling machines, hot air soldering gun, projects boards for testing and magnifying glasses. Industrial instrument repairing and designing are done under engineering consultancy by engineers in the electronic workshop.

*Technical Officer: Mr. S. Fernando
Extension: 3351*

ENTC Auditorium

With a capacity of 120, the Department auditorium is one of its most charming and comfortable places. Most of its new facilities are there thanks to the 2002/2003 batch of the department and the World Bank HETC project. It is most commonly used for lecturing as well as for the official events of the department, meetings and other special gatherings.

Students Living Space

Students immensely benefit from the “living space” on the mezzanine floor. Inspired by the Think Lab, it provides students a space to engage in interactive and collaborative learning.

Using Facilities

The Department of Electronic and Telecommunication Engineering conducts its scheduled academic work from 8.00 am to 6.00 pm. The additional lecture hours or practical sessions can be arranged under the permission of the lecturer in-charge. Prior arrangements should be made with the instructor and the technical officer of the relevant lab, whenever there is a need to re-schedule the practical sessions.

Computer laboratory (1st floor) is open to the students of the department from 8.30 am to 4.30 pm. On request the opening hours can be extended for academic work. All the other laboratories follow a scheduled time table while arranging the practical sessions.

Students are allowed to use the equipment of the laboratories at any time, with the permission from the lecturer and the technical officer of the laboratory. For the final year project purposes, special arrangements regarding the usage of the laboratories can be made with the prior approval from the Head of Department.
Code of Conduct for Laboratories

Guidelines for Laboratory Sessions

√ Be punctual.
√ Keep your bags and shoes in the appropriate racks outside the laboratory.
√ Ensure that all equipment required for the practical is available.
√ Maintain a quiet environment.
√ Please raise your hand to get the attention of the instructor if you have any doubt during the laboratory session.
√ Arrange all laboratory equipment in their appropriate places after the end of the session. Switch off the power of all the equipment that you have switched on, at the end of the practical session.
√ Line up the chairs/stools before you leave the laboratory.

• Ensure that you have gone through the pre-lab document before coming for the practical.
• Fill the on-lab document while doing the practical, and get the stamp of the laboratory and the signature of the instructor in charge.
• Workout the post-lab document and submit it together with the on-lab document in the next practical session.

Code of Conduct for the Computer Laboratory

1. No student should use another student’s login account. If found, that login account will be disabled.
2. All students must sign in and out in the register kept at the computer laboratory if required.
3. Volume of the speakers should be low enough not to disturb others.
4. Computers should not be locked when not in use.
5. Computers should be shut down after use.
6. Lab is open from 8.00 am. to 4.30 pm. If students need to use the lab after 4.30 pm., a prior arrangement will be made on request.
Choosing your specialization builds a foundation for your future career. However to excel in your professional life you need to balance your work with many other activities which will build your character. In our lecture halls and laboratories you will learn new concepts and accumulate knowledge to earn the qualification you seek. While appreciating one’s own major, the department encourages its student body to seek, understand and appreciate other relevant areas in the engineering discipline as these provide the multidisciplinary environment in which you will work after graduation.

Our undergraduate program of study is well planned to provide the most up to date knowledge. The department fosters a culture of self-learning, encouraging to look beyond what is taught in the lecture halls. In keeping with the department’s policy of “teaching you to learn” we encourage you to get involved with the teaching learning process within the lecture hall and independently build knowledge outside the lecture hall. Our graduates are known to “hit the ground running” in the industry. They are known for their abilities and good performance. We often receive very favorable reviews from the industry. The department maintains flexible hours when it comes to laboratories being used for academic activities.
We encourage you to use the facilities to investigate and practice the theories taught in the lectures so that you may enhance your ability to “do more with what you know”.

While you are being trained in academic activities you are encouraged to take part in the activities of the e-club, sports activities within the university, join clubs and organizations in the university, and do other recreational activities which make you a well rounded person. These activities will help you to develop aesthetic talents, organizational abilities and communication skills to become a graduate who can face the future with confidence. Activities such as the “Tronix Nite”, TPL cricket match, e-Care, and exhibitions the undergraduates organize are very good examples of how our students improve their soft skills. The department encourages you to engage in at least 20 hours of social responsibility activities each year and will support you in any way possible to identify and organize such activities.

Your time at the department will be made easier and more fruitful if you plan, prepare and persevere. Many students will find it hard to balance their academic activities and other relevant activities if you fail to plan ahead.

As a young graduate, one day you will be called upon to have precise time management capabilities, ability to prioritize tasks and to have commitment to complete the important tasks. In our capacity, the program at our department is designed to inculcate these good values and ensure these will one day become habits.

Once you are in our department, we will take good care of you and do our best to ensure that your undergraduate life is a fruitful and enjoyable experience. It is our vision to produce a graduate who is technically competent and socially responsible and be an asset to any organization.
Curriculum and Modules

Electronic and Telecommunication Engineering

Course Curriculum

The information given below outlines the course curriculum for the Electronic and Telecommunication Engineering specialization.

The course unit selections indicated for a particular semester is for guidance of students and academic advisors only. All units shown may not be offered in a particular year. The syllabi of course units offered by other departments are available with the curriculum for that particular department.

The following descriptors are used:

C - Core Modules
E - Elective Modules
O - Optional Modules

Summary of Normal Minimum Credit Requirements

Overall GPA credits = 137 credits
Overall Non-GPA credits = 13 credits

Graduation Credit Requirement

<table>
<thead>
<tr>
<th>Semester/ Term</th>
<th>GPA Credits Normal *</th>
<th>Non GPA Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Semester 2</td>
<td>17.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Semester 3</td>
<td>22.0</td>
<td>-</td>
</tr>
<tr>
<td>Semester 4</td>
<td>21.0</td>
<td>-</td>
</tr>
<tr>
<td>Semester 5</td>
<td>22.0</td>
<td>-</td>
</tr>
<tr>
<td>Industrial Training</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>Semester 6B</td>
<td>7.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Semester 7</td>
<td>16.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Semester 8</td>
<td>17.0</td>
<td>-</td>
</tr>
</tbody>
</table>

* Irrespective of the norm, maximum credits a student could register for a Semester is 26
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/ Assign.</th>
<th>Credits</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hrs/week</td>
<td>hrs/week GPA</td>
<td></td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>Total</td>
</tr>
</tbody>
</table>

Semester 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/ Assign.</th>
<th>Credits</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hrs/week</td>
<td>hrs/week GPA</td>
<td></td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/ Assign.</th>
<th>Credits</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hrs/week</td>
<td>hrs/week GPA</td>
<td></td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>Total</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/ Assign.</th>
<th>Credits</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hrs/week</td>
<td>hrs/week GPA</td>
<td></td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NGPA</td>
<td>Total</td>
</tr>
</tbody>
</table>

Total for Semester 1
15.0 1.0 16.0

Total for Semester 2
17.0 3.0 20.0
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA2013</td>
<td>Differential Equations</td>
<td>C</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA2023</td>
<td>Calculus</td>
<td>C</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2013</td>
<td>Electronics II</td>
<td>C</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2040</td>
<td>Random Signal Processing</td>
<td>C</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2053</td>
<td>Communication Systems and Networks</td>
<td>C</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2030</td>
<td>Fundamentals of Computer Organization</td>
<td>C</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2090</td>
<td>Laboratory Practice - II</td>
<td>C</td>
<td>-</td>
<td>9/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE2093</td>
<td>Theory of Electricity</td>
<td>C</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2532</td>
<td>Robot Design and Competition</td>
<td>E</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME1822</td>
<td>Basic Engineering Thermodynamics</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME2122</td>
<td>Engineering Drawing and Computer Aided Modelling</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN1030</td>
<td>Entrepreneurship Skill Development</td>
<td>O</td>
<td>0.5</td>
<td>3/2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for Semester 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA2033</td>
<td>Linear Algebra</td>
<td>C</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2110</td>
<td>Electronics - III</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2073</td>
<td>Analog and Digital Communication</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2083</td>
<td>Electromagnetics</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2570</td>
<td>Digital Signal Processing</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td>EN2962</td>
<td>Fundamentals of Image Processing and Machine Vision</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2560</td>
<td>Internet of Things Design and Competition</td>
<td>E</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM2800</td>
<td>Introduction to Biomedical Engineering</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2022</td>
<td>Data Structures and Algorithms</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2832</td>
<td>Modular Software Development</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE2013</td>
<td>Electrical Machines & Drives</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA2053</td>
<td>Graph Theory</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>MN2010</td>
<td>Entrepreneurial Leadership</td>
<td>O</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for Semester 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.0</td>
</tr>
<tr>
<td>Code</td>
<td>Module Name</td>
<td>Category</td>
<td>Lectures</td>
<td>Lab/Assign.</td>
<td>Credits</td>
<td>GPA</td>
<td>NGPA</td>
<td>GPA</td>
<td>NGPA</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3030</td>
<td>Circuits and Systems Design</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3053</td>
<td>Digital Communication - I</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3143</td>
<td>Electronic Control Systems</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS3032</td>
<td>Computer Networks</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3023</td>
<td>Electronic Design Realization</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA3013</td>
<td>Applied Statistics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA3023</td>
<td>Numerical Methods</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3042</td>
<td>Business Economics & Financial Accounting</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3052</td>
<td>Industrial Management & Marketing</td>
<td>E</td>
<td>2.5</td>
<td>3/2</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3010</td>
<td>Multidisciplinary Design, Innovation and</td>
<td>O</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Venture Creation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Semester 5</td>
<td></td>
<td></td>
<td></td>
<td>22.0</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Training</td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Industrial Training</td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester 6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3110</td>
<td>Electronic Devices</td>
<td>E</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE1xxx</td>
<td>Humanities Electives I</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE2xxx</td>
<td>Humanities Electives II</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3223</td>
<td>Electronic Manufacturing Systems</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3240</td>
<td>Embedded Systems Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3250</td>
<td>Internet of Things</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3370</td>
<td>Traffic Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3532</td>
<td>Electronic Instrumentation</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3210</td>
<td>Self Initiated Innovation</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3900</td>
<td>Seminar</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Semester 6</td>
<td></td>
<td></td>
<td></td>
<td>7.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Module Name</td>
<td>Category</td>
<td>Lectures</td>
<td>Lab/ Assign.</td>
<td>Credits</td>
<td>GPA</td>
<td>NGPA</td>
<td>GPA</td>
<td>NGPA</td>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Semester 7</td>
<td></td>
</tr>
<tr>
<td>EN4202</td>
<td>Project*</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>EN4800</td>
<td>Ethics & Legal Fundamentals</td>
<td>C</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>EN4932</td>
<td>Technical and Scientific Writing</td>
<td>C</td>
<td>0.5</td>
<td>3/2</td>
<td>1.0</td>
<td>5.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN403</td>
<td>Digital IC Design</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4213</td>
<td>Power Electronics</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4053</td>
<td>Digital Communications II</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4313</td>
<td>Telecommunication Core Networks</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4363</td>
<td>Microwave Communications</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4553</td>
<td>Machine Vision</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4563</td>
<td>Robotics</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>BM4111</td>
<td>Medical Electronics and Instrumentation</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>BM4301</td>
<td>Medical Image Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>BM4321</td>
<td>Genomic Signal Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>MA4013</td>
<td>Linear Models and Multivariate Statistics</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MA4033</td>
<td>Time Series and Stochastic Processes</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MA4023</td>
<td>Operational Research</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MA4053</td>
<td>Neural Network and Fuzzy Logic</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MN450</td>
<td>Project Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4062</td>
<td>Organizational Behaviour and Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4132</td>
<td>Consumer and Industrial Marketing</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4122</td>
<td>Human Research Management and Industrial Relations</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4042</td>
<td>Technology Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4022</td>
<td>Engineering Economics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4030</td>
<td>Strategic Enterprise Management</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN3020</td>
<td>Entrepreneurship Business Basics</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Total for Semester 7: 16.0 1.0 17.0
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN4202</td>
<td>Project*</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>EN4020</td>
<td>Advanced Digital Systems</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4233</td>
<td>Industrial Electronics and Automation</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4283</td>
<td>Electronic Application in Renewable Energy</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4430</td>
<td>Analog IC Design</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4323</td>
<td>Optical Fibre Communications</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4333</td>
<td>Microwave Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4353</td>
<td>Radar and Navigation</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4383</td>
<td>Wireless and Mobile Communications</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4393</td>
<td>Information Theory</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4403</td>
<td>Mobile Computing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4420</td>
<td>Advanced Signal Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4573</td>
<td>Pattern Recognition and Machine Intelligence</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4583</td>
<td>Advances in Machine Vision</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4593</td>
<td>Autonomous Systems</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>EN4922</td>
<td>Research Project**</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>MA4013</td>
<td>Linear Models and Multivariate Statistics</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MA4033</td>
<td>Time Series and Stochastic Processes</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MA4023</td>
<td>Operational Research</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MA4053</td>
<td>Neural Network and Fuzzy Logic</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MN4122</td>
<td>Human Resource Management and Industrial Relations</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4042</td>
<td>Technology Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4072</td>
<td>Small Business Management and Entrepreneurship</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4022</td>
<td>Engineering Economics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4052</td>
<td>Project Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4092</td>
<td>Management Skills Development</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4112</td>
<td>Production and Operations Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4010</td>
<td>Business Plan Development</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4170</td>
<td>Global Entrepreneurship</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>
Module lineup for the Entrepreneurship Minor

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN1030</td>
<td>Entrepreneurship Skill Development</td>
<td>C</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN2010</td>
<td>Entrepreneurial Leadership</td>
<td>C</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN3010</td>
<td>Multidisciplinary Design, Innovation and Venture Creation</td>
<td>C</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN3020</td>
<td>Entrepreneurship Business Basics</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>MN4010</td>
<td>Business Plan Development</td>
<td>C</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>MN4022</td>
<td>Engineering Economics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4042</td>
<td>Technology Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4112</td>
<td>Production and Operations Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4030</td>
<td>Strategic Enterprise Management</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>MN4170</td>
<td>Global Entrepreneurship</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Total for all Semesters: 11.0 2.0 13.0

Notes

* A total of 10 credits are distributed in Semester 7, Semester 8.

** If “Research Project” is taken, 2.5 credits each from Semester 7 and Semester 8 is considered to be covered.
Course Curriculum

The information given below outlines the course curriculum for the Biomedical Engineering specialization.

The course unit selections indicated for a particular semester is for guidance of students and academic advisors only. All units shown may not be offered in a particular year. The syllabi of course units offered by other departments are available with the curriculum for that particular department.

The following descriptors are used:

- **C** - Core Modules
- **E** - Elective Modules
- **O** - Optional Modules

Summary of Normal Minimum Credit Requirements

<table>
<thead>
<tr>
<th></th>
<th>GPA Credits</th>
<th>Non GPA Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall GPA credits</td>
<td>= 137 credits</td>
<td></td>
</tr>
<tr>
<td>Overall Non-GPA credits</td>
<td>= 13 credits</td>
<td></td>
</tr>
</tbody>
</table>

Graduation Credit Requirement

<table>
<thead>
<tr>
<th>Semester/ Term</th>
<th>GPA Credits</th>
<th>Non GPA Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Semester 2</td>
<td>17.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Semester 3</td>
<td>22.0</td>
<td>-</td>
</tr>
<tr>
<td>Semester 4</td>
<td>20.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Semester 5</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Industrial Training</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>Semester 6B</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Semester 7</td>
<td>18.0</td>
<td>-</td>
</tr>
<tr>
<td>Semester 8</td>
<td>16.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Irrespective of the norm, maximum credits a student could register for a Semester is 26
Semester 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1013</td>
<td>Mathematics</td>
<td>C</td>
<td>3.0</td>
<td>1/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1032</td>
<td>Programming Fundamentals</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME1032</td>
<td>Mechanics</td>
<td>C</td>
<td>2.0</td>
<td>3/4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT1022</td>
<td>Properties of Materials</td>
<td>C</td>
<td>2.0</td>
<td>3/4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE1022</td>
<td>Fluid Mechanics</td>
<td>C</td>
<td>2.0</td>
<td>3/4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE1013</td>
<td>Electrical Engineering</td>
<td>C</td>
<td>2.0</td>
<td>3/4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL1012</td>
<td>Language Skill Enhancement I</td>
<td>C</td>
<td>-</td>
<td>3/1</td>
<td>1.0</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN1012</td>
<td>Engineering in Context</td>
<td>C</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total for Semester 1: 15.0 1.0 16.0

Semester 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1023</td>
<td>Methods of Mathematics</td>
<td>C</td>
<td>3.0</td>
<td>1/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM1011</td>
<td>Engineering in Medicine and Biology</td>
<td>C</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN1013</td>
<td>Electronics - I</td>
<td>C</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN1053</td>
<td>Introduction to Telecommunications</td>
<td>C</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN1060</td>
<td>Signals and Systems</td>
<td>C</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN1093</td>
<td>Laboratory Practice - I</td>
<td>C</td>
<td>-</td>
<td>9/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN1970</td>
<td>Communication Skills</td>
<td>C</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td>17.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN1030</td>
<td>Entrepreneurship Skill Development</td>
<td>Q</td>
<td>0.5</td>
<td>3/2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total for Semester 2: 17.0 2.0 19.0
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/ Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 3</td>
<td></td>
</tr>
<tr>
<td>MA2013</td>
<td>Differential Equations</td>
<td>C</td>
<td>2.0</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA2023</td>
<td>Calculus</td>
<td>C</td>
<td>2.0</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2013</td>
<td>Electronics II</td>
<td>C</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2040</td>
<td>Random Signals and Processes</td>
<td>C</td>
<td>2.0</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM2011</td>
<td>Human Anatomy and Physiology I</td>
<td>C</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2030</td>
<td>Fundamentals of Computer Organization and Design</td>
<td>C</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN2090</td>
<td>Laboratory Practice - II</td>
<td>C</td>
<td>-</td>
<td>9/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE2093</td>
<td>Theory of Electricity</td>
<td>C</td>
<td>2.0</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>ME1822</td>
<td>Basic Engineering Thermodynamics</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME2122</td>
<td>Engineering Drawing and CAM</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>EN2532</td>
<td>Robot Design and Competition</td>
<td>O</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN1030</td>
<td>Entrepreneurship Skill Development</td>
<td>O</td>
<td>0.5</td>
<td>3/2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.0</td>
</tr>
<tr>
<td>Total for Semester 3</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Semester 4 | | | | | | | | | | |
| MA2033 | Linear Algebra | C | 2.0 | | 2.0 | | | | | |
| EN2110 | Electronics - III | C | 3.0 | 3/1 | 4.0 | | | | | |
| EN2083 | Electromagnetics | C | 3.0 | 3/1 | 4.0 | | | | | |
| EN2570 | Digital Signal Processing | C | 2.0 | 3/1 | 3.0 | | | | | |
| BM2020 | Human Anatomy and Physiology II | C | 2.0 | 3/2 | 2.5 | | | | | |
| BM2101 | Analysis of Physiological Systems | C | 2.0 | 3/1 | 3.0 | | | | | |
| BM2900 | Field Visit | C | - | | 1.0 | 18.5| | 1.0 | | |
| EN2550 | Fundamentals of Image Processing and Machine vision | E | 2.0 | 3/1 | 3.0 | | | | | |
| CS2022 | Data Structures and Algorithms | E | 2.0 | 3/2 | 2.5 | | | | | |
| CS2832 | Modular Software Development | E | 2.0 | 3/2 | 2.5 | | | | | |
| MA2053 | Graph Theory | E | 2.0 | | 2.0 | | | | | |
| MN2010 | Entrepreneurial Leadership | O | 1.5 | 3/2 | 2.0 | | | | | |
| Total for Semester 4 | | | | | | | | | | 21.5 |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hrs/week</td>
<td>hrs/week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM3121</td>
<td>Medical Imaging</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3030</td>
<td>Circuits and Systems Design</td>
<td>C</td>
<td>3.0</td>
<td>3/1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3143</td>
<td>Electronic Control Systems</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS3032</td>
<td>Computer Networks</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3023</td>
<td>Electronic Design Realization</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA3013</td>
<td>Applied Statistics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA3023</td>
<td>Numerical Methods</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3042</td>
<td>Business Economics & Financial Accounting</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3052</td>
<td>Industrial Management & Marketing</td>
<td>E</td>
<td>2.5</td>
<td>3/2</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3010</td>
<td>Multidisciplinary Design, Innovation and Venture Creation</td>
<td>O</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Semester 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.0</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 6B</td>
<td>Industrial Training*</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM3990</td>
<td>Industrial Training</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Industrial Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM3180</td>
<td>Scientific Communications for BME</td>
<td>C</td>
<td>1.0</td>
<td>3/1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM3190</td>
<td>Biostatistics and Ethics for BME</td>
<td>C</td>
<td>-</td>
<td>3/1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3900</td>
<td>Seminar</td>
<td>C</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>DE1xxx</td>
<td>Humanities Electives I</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE2xxx</td>
<td>Humanities Electives II</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>EN3110</td>
<td>Electronic Devices</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3240</td>
<td>Embedded Systems Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3370</td>
<td>Traffic Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3532</td>
<td>Electronic Instrumentation</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3210</td>
<td>Self Initiated Innovation</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Semester 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
<td>3.0</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Module Name</td>
<td>Category</td>
<td>Lectures hrs/week</td>
<td>Lab/Assign. hrs/week</td>
<td>Credits GPA</td>
<td>NGPA</td>
<td>GPA</td>
<td>NGPA</td>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>BM4200</td>
<td>Research Project*</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4111</td>
<td>Medical Electronics and Instrumentation</td>
<td>C</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4151</td>
<td>Biosignal Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4301</td>
<td>Medical Image Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4321</td>
<td>Genomic Signal Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4603</td>
<td>Digital IC Design</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4213</td>
<td>Power Electronics</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4553</td>
<td>Machine Vision</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4563</td>
<td>Robotics</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4013</td>
<td>Linear Models and Multivariate Statistics</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4033</td>
<td>Time Series and Stochastic Processes</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4023</td>
<td>Operational Research</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4053</td>
<td>Neural Network and Fuzzy Logic</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4150</td>
<td>Project Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4062</td>
<td>Organizational Behaviour and Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4132</td>
<td>Consumer and Industrial Marketing</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4122</td>
<td>Human Resource Management and Industrial Relations</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4042</td>
<td>Technology Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4022</td>
<td>Engineering Economics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4030</td>
<td>Strategic Enterprise Management</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN3020</td>
<td>Entrepreneurship Business Basics</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total for Semester 7: 18.0 | 1.0 | 19.0
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Lab/Assign.</th>
<th>Credits</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM4200</td>
<td>Research Project*</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4500</td>
<td>Biomechanics</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4521</td>
<td>Rehabilitation Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4600</td>
<td>Biomaterials</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM4620</td>
<td>Biotechnology</td>
<td>E</td>
<td>2.0</td>
<td>3/2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4020</td>
<td>Advanced Digital Systems</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4233</td>
<td>Industrial Electronics and Automation</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4283</td>
<td>Electronic Application in Renewable Energy</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4430</td>
<td>Analog IC Design</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4333</td>
<td>Microwave Engineering</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4393</td>
<td>Information Theory</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4403</td>
<td>Mobile Computing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4420</td>
<td>Advanced Signal Processing</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4573</td>
<td>Pattern Recognition and Machine Intelligence</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4583</td>
<td>Advances in Machine Vision</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN4593</td>
<td>Autonomous Systems</td>
<td>E</td>
<td>2.0</td>
<td>3/1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4013</td>
<td>Linear Models and Multivariate Statistics</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4033</td>
<td>Time Series and Stochastic Processes</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4023</td>
<td>Operational Research</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4053</td>
<td>Neural Network and Fuzzy Logic</td>
<td>E</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4122</td>
<td>Human Resource Management and Industrial Relations</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4042</td>
<td>Technology Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4072</td>
<td>Small Business Management and Entrepreneurship</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4022</td>
<td>Engineering Economics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4150</td>
<td>Project Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4092</td>
<td>Management Skills Development</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4112</td>
<td>Production and Operations Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4010</td>
<td>Business Plan Development</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN4170</td>
<td>Global Entrepreneurship</td>
<td>E</td>
<td>1.5</td>
<td>3/2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total for Semester 8: 16.5 16.5
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Category</th>
<th>Lectures</th>
<th>Credits</th>
<th>Lab/hrs/week</th>
<th>GPA</th>
<th>Norm</th>
<th>GPA</th>
<th>NGPA</th>
<th>GPA</th>
<th>NGPA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN1030</td>
<td>Entrepreneurship Skill Development</td>
<td>C</td>
<td>1.0</td>
<td>3</td>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN2010</td>
<td>Entrepreneurial Leadership</td>
<td>C</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN3010</td>
<td>Multidisciplinary Design, Innovation and Venture</td>
<td>C</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN3020</td>
<td>Entrepreneurship Business Basics</td>
<td>C</td>
<td>2.0</td>
<td>3</td>
<td>2.0</td>
<td>3.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN4010</td>
<td>Business Plan Development</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>3.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN4022</td>
<td>Engineering Economics</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN4042</td>
<td>Technology Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN4112</td>
<td>Production and Operations Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN4170</td>
<td>Strategic Enterprise Management</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MN4170</td>
<td>Global Entrepreneurship</td>
<td>E</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Notes: A total of 10 credits are distributed in Semester 7, Semester 8.
Semester 2 Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN1013</th>
<th>Module Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>3-</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Design diode Circuits
2. Analyze DC biasing techniques of BJTs and FETs
3. Design combinational logic circuits
4. Analyze characteristics of logic families

Outline Syllabus

1. **Diodes and their applications (8 h):** Diode characteristics, clipping and clamping circuits, rectifiers and smoothing, light emitters and light sensors, Zener diodes, DC power supply using diodes.

2. **Transistors and their applications - BJT and FET (16 h):** Device structures and characteristics, biasing of transistors and Q-point analysis, analysis of DC load line, transistor as a switch/amplifier.

3. **Combinational Logic Circuits (8 h):** Logic gates and Boolean expressions, minimization of logic expressions, Karnaugh maps, design of combinational logic circuits.

4. **Logic Families (4 h):** Saturated unsaturated logics, TTL and CMOS, tri-state logics, fan in, fan out and power consumption of logic gates.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN1054</th>
<th>Module Title</th>
<th>Introduction to Telecommunications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>GPA</td>
<td></td>
<td>Lab/Assignments</td>
</tr>
<tr>
<td></td>
<td>GPA</td>
<td></td>
<td>Pre/Co – requisites</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td></td>
<td></td>
<td>At the end of the module the student will be able to:</td>
</tr>
<tr>
<td>1.</td>
<td>Recognize the historical evolution, the current status and future trends of the telecommunications industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Explain how signals can be characterized, classify them into different types and identify their role in communications systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>To explain channels, possible impairments and their impact on communication system performance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>To distinguish between different modulation and multiplexing schemes and illustrate their application in different scenarios.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Describe how different types of switching schemes enable transmission of information over communication networks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>To compare and contrast transmission media in terms of their characteristics and identify typical applications of each.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Channels (6 h): Channel bandwidth, noise and other impairments, impact and introduction to mitigation techniques, Signal-to-Noise ratio, and the use of decibels in power measurements. The information-carrying capacity of a channel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Transmission media (6 h): Guided transmission media and characteristics, unguided transmission, the radio spectrum, its usage and regulation, radio wave propagation. Different types of antennas, their characteristics and applications. Human exposure to electromagnetic radiation, health hazards and safety levels.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module Code | EN1060 | Module Title | Signals and Systems
---|---|---|---
Credits | 3.0 | Hours/Week
GPA/NGPA | GPA | Lectures | 3 | Pre/Co – requisites | -
Lab/Assignments | - | GPA

Learning Outcomes

At the end of the module the student will be able to:

1. Differentiate between continuous-time, discrete-time and digital signals, and techniques applicable to the analysis of each type.
2. Use Fourier techniques to understand frequency domain characteristics of signals.
3. Use appropriate theoretical principles for sampling and reconstruction of analog signals.
4. Apply appropriate theoretical principles to characterize the behavior of Linear Time Invariant (LTI) Systems.
5. Use the Laplace transform and the Z-transform to treat a class of signals and systems broader than what Fourier techniques can handle.

Outline Syllabus

1. Introduction to Signals and Systems (2 h): Classification of signals as continuous-time, discrete-time and digital. Theoretical building block signals such as the impulse and step functions. Introduction to systems and input-output relationships. Characterizing Linear Time-Invariant (LTI) systems. Overview of the analysis techniques applicable to each type of signal/system and their interrelationships.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN1093</th>
<th>Module Title</th>
<th>Laboratory Practice 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 0</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Pre/Co –</td>
<td>requisites EN1013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EN1054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EN1060</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Develop the ability to analyze, design, and simulate electronic circuits.
2. Design, construct and take measurement of electronic circuits in order to compare experimental results with theoretical analysis.
3. Observe the amplitude and frequency responses of common amplifiers and filters.
4. Apply time domain and frequency domain analysis tools to simulate and analyse signals and LTI systems.
5. Design, construct, test, and demonstrate a given project and present the work orally & as a written report in small groups.

Outline Syllabus

1. Orientation to the use of Laboratory Instruments
2. Construction of a simple Zener-regulated dc power supply
3. Build and take measurements on a simple BJT amplifier
4. Develop logic gates using DL, DTL, RTL and test logic gates using TTL and CMOS ICs
5. Construct combinational logic circuits: half adder, full adder, encoder, multiplexer
6. Observe communication channel characteristics and effects of noise
7. Simulate and study analog modulation schemes
8. Simulate and study digital modulation schemes
9. Construct and test an FM radio receiver
10. Design and build a Yagi antenna for VHF - TV reception
11. Simulate and observe the properties of continuous-time signals by applying Fourier techniques for their analysis and synthesis
12. Simulate and observe LTI systems such as impulse response, step response, convolution and frequency response.
13. Sample analog signals and reconstruct them from samples
15. Group design project
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN1970</th>
<th>Module Title</th>
<th>Communication Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Make a public speech confidently on a non-technical topic
2. Write effective non-technical documents
3. Communicate effectively in seeking employment

Outline Syllabus

1. **Public speaking fundamentals**: Effective speech writing comprising an opening, a body and a conclusion, vocal variety and body language, effectively using visual aids, providing evidence
2. **Fundamentals of writing**: Writing a synopsis, a critique, and an abstract
3. **Communications for seeking employment**: Writing a personal mission statement, curriculum vitae, facing an interview effectively
Module Code | EN1070 | Module Title | Electronic Product Design and Manufacture
Credits | 3.0 | Hours/Week | Lectures | 2 | Pre/Co – requisites | -
GPA/NGPA | NGPA | Lab/Assignments | 3

Learning Outcomes

At the end of the module the student will be able to:

1. Identify basic engineering design concepts.
2. Use design tools for electronic product prototyping.
3. Identify various manufacturing processes involved in electronic product manufacture.
4. Identify issues related to manufacturing during the design stage.
5. Apply the knowledge gained to a simple design project resulting in a working prototype.

Outline Syllabus

1. **Design Principles (4 h):** Introduction to engineering design, life cycle of engineering products and processes, design processes and design tools, concurrent engineering, creativity and reasoning, analysis and synthesis, simulations, evaluation and decision making
2. **Basic Software tools needed for Electronic Design and Manufacture (4 h):** Electronic circuit design software, simulation software, solid modeling software and thermal analysis software.
3. **Product Dissection (4 h):** Electronic product disassembly and identification of manufacturing processes
4. **PCB manufacturing (4 h):** Schematic design, layout design, design rules, photo-tool creation, drilling, plating, etching, solder masking
5. **Component Mounting (4 h):** Through-hole component forming, component insertion, surface mounting
6. **Soldering Methods (4 h):** Hand soldering, wave soldering, reflow soldering
7. **Enclosures (4 hrs):** Injection moulding, metal forming, metal punching
8. **Design Assignment:** Group based design project covering following aspects (30 h)
a) gathering of data and information from various sources as a preliminary to the design
b) preparing a work plan and delegating duties
c) working with others and to produce results by given deadlines and within given costs
d) learning the basic procedures required for conceptual, preliminary and detailed designs
e) learning the importance of the cost component in the manufacturing process
f) learning the importance of considering the limitations of manufacturing processes during design
g) preparing a report and making a presentation on the work done
h) demonstrating the working of the prototype
Semester 3 Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2013</th>
<th>Module Title</th>
<th>Electronics II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week Lectures</td>
<td>3</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Design BJT and FET amplifiers
2. Design of Op Amp circuits
3. Use appropriate A/D and D/A converters for a given application
4. Design a sequential digital circuit with not more than 8 states

Outline Syllabus

1. **Transistors and their applications (16 h):** Transistor bias consideration, β-uncertainty and temperature effects, AC load line, Small signal mid-frequency analysis, High-frequency analysis.
3. **A/D and D/A converters (6 h):** Sample and hold devices, Types of A/D and D/A converters.
4. **Sequential Logic Circuit design (12 h):** Introduction to flip-flops and latches, state diagrams, state reduction and assignment, excitation tables, circuit design, analysis of unused states.
Module Code | EN2040
---|---
Module Title | Random Signals and Processes
Credits | 2.0
GPA/NGPA | GPA
Hours/Week | Lectures 2
Lab/Assignments
Pre/Co–requisites | EN1060
Learning Outcomes
At the end of the module the student will be able to:
1. Discuss different ways in which probabilistic models are used in telecommunications theory and practice.
2. Examine random variables in terms of their statistical characteristics
3. Manipulate bivariate random variables
4. Identify the defining parameters of random vectors and their usage
5. Examine random processes in terms of their statistical characteristics
6. Infer noise as a random process

Looking Ahead:
Outline Syllabus
1. **Introduction (2 h)**: Review of deterministic signals and systems analysis. Differentiate random signals from deterministic signals. Review of basic probability concepts. Introduction to random variables and processes. Illustrative application of probability models in communications such as the binary symmetric channel
2. **Random Variables (6 h)**: Definition of a random variable. Classification of random variables as continuous and discrete. Characterization of each type of random variable using the probability density/mass function, the cumulative distribution function, mean and variance. Functions of random variables. Transformation of random variables. Uniform, Binomial and Poisson random variables and examples of their application in communication systems. The Gaussian (normal) random variable, its characteristics and application in signal detection in noisy channels
4. **Random Vectors (4 h)**: Extension of bivariate random variable analysis to random vectors (multivariate random variables), multivariate probability density functions, correlation and covariance matrices. Characteristics of the Gaussian random vector. Illustration of applications in multi-antenna systems
5. **Random Processes (8 h)**: Examples of real-life phenomena which can be modeled as random processes. Characterization of random processes, their classification as stationary, wide sense stationary and ergodic. Derivation of the power spectral density function of random processes. Multiple random processes and their interrelationships. Transmission of random processes through linear time invariant systems, and related spectra. Examples of processes in communications systems which are modeled as random processes
6. **Noise as a Random Process (4 h)**: Representation of white noise, low-pass noise, and band-pass noise as random processes. Illustrative applications such as in performance analysis of communication systems, optimum filtering

Looking Ahead:
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2053</th>
<th>Module Title</th>
<th>Communication Systems and Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>GPA/NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td>Hours/Week</td>
<td>Lectures</td>
<td>Pre/Co – prerequisites</td>
<td>Lab/Assignments</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Review the different functions required in a communications network and how they are implemented in a layered architecture.
2. Explain key functions and protocols of the physical layer, and describe their implementation in standards.
3. Explain key functions and protocols of the data link layer, and describe their implementation in standards.
4. Examine the wide variety of access networks available for subscribers of telecommunication services.
5. Discuss telecommunications core network infrastructure and its role in forming an integrated telecommunications system.
6. Select a suitable transmission medium and design an appropriate communication link for a given scenario.

Outline Syllabus

1. **Communications networks (2 h):** Classification of networks according to range, topology, function etc. Layered structure of communication protocols and reference models, network elements and their roles.
2. **The Physical Layer (8 h):** Functions of the physical layer including line encoding, synchronization, modulation, multiplexing and encryption. Illustrative examples of physical layer implementations from a variety of wired and wireless standards such as RS232, USB, FDDI, Ethernet, Bluetooth, WiFi, HDMI, FireWire.
3. **The Data Link Layer (12 h):** Key design issues present in the data link layer. Flow control techniques and their analysis. Forward error control and automatic repeat request (ARQ) techniques and their analysis. Introduction to different types of error detection and error correction codes. The High Level Data Link (HDLC) protocol and its implementation in different networks. Medium access mechanisms in the data link layer such as Token-based, CSMA/CD, CSMA/CA and ALOHA. Examples of their implementation in different types of shared-medium networks such Ethernet (wired and wireless), token ring, satellite and terrestrial wireless networks. Introduction to the network layer.
4. **Access networks (10 h):** The role of access networks. Systems view of copper, wireless (fixed and mobile, satellite) and fiber access networks. The PSTN, ADSL, wireless LANs and cellular networks as examples, highlighting the physical and data link layer components. Comparison of different access networks.
5. **Core Networks (4 h):** The role of core networks and their functions. Physical media, architecture and elements of core network infrastructure. Introduction to high speed transmission and switching techniques such as SONET, DWDM, ATM, IP.
6. **Communication Link Design (4 h):** Review of radio wave propagation in the microwave region and signal propagation over optical fibers. Design issues in terrestrial/satellite microwave and optical fiber communications. Simple power budgets for optical and microwave links.
7. **Other Communications Systems (2 h):** Introduction to RADAR, navigation and broadcasting.
Module Code
<table>
<thead>
<tr>
<th>EN2080</th>
</tr>
</thead>
</table>

Module Title
| Computer Systems Engineering |

Credits
| 3.0 |

GPA/NGPA
| GPA |

Hours/Week
<table>
<thead>
<tr>
<th>Lectures</th>
<th>Lab/Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Pre/Co – requisites
| - |

Learning Outcomes
At the end of the module the student will be able to:

1. Explain functional blocks of a computer system
2. Discuss performance metrics of a computer system
3. Explain basic processor architectures
4. Design a 8 bit RISC processor
5. Design a memory hierarchy for a computer system
6. Explain interfacing with memory and I/O devices and the need for bus based systems
7. Discuss the operating system as a resource manager

Outline Syllabus

1. **Introduction (3 h):** Computer as a data processing system, functional blocks of a computer system.
2. **Performance metrics of a computer system (3 h):** Throughput, speed, response time, Amdhal law, quantitative principles of computer design.
3. **Processor architecture (8 h):** Von-Neumann model, instruction set architecture, evolution of architecture – RISC, VLIW, EPIC.
4. **Processor design (10 h):** Micro-architectures (hardwired and microprogramming).
5. **Memory (8 h):** Principles of DRAM, SRAM and their construction, organization of memory, principle of cache memory and its design considerations, specification of memory, interfacing and performance issues.
6. **Interfacing (4 h):** Low and high speed peripherals, internal and external bus architectures: AMBA, Wishbone, USB, and PCI.
7. **Operating Systems (6 h):** Processes and threads, memory management, virtual memory, scheduling, concurrency.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2090</th>
<th>Module Title</th>
<th>Laboratory Practice II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>9</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Simulate and construct combinational and sequential logic circuits
2. Develop digital circuit design using programmable ICs
3. Construct building blocks of a computer
4. Develop an understanding of programming in assembly language
5. Design and build simple communications networks
6. Design, construct, test, demonstrate a given project and present the work orally and as a written report, in small groups

Outline Syllabus

1. Build and take measurements on op-amp circuits in order to identify applications of op-amps
2. Construction of circuits to control ac power and to compare experimental values with theoretical analysis.
3. Design a microcontroller based simple digital circuit using the PC based PIC simulator and implement the circuit
4. Design and implement simple digital circuits on FPGA
5. Use a 4-bit ALU to perform different binary arithmetic and logic operations
6. Identify and construct memory cells: SRAM and DRAM
7. Implement basic programming constructs like conditional statements, control loops (for, while) in assembly language in x86 and micro-controller environments
8. Develop and study physical and data link layer communications protocols
9. Develop a terrestrial microwave link design
10. Group Design Project
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2532</th>
<th>Module Title</th>
<th>Robot Design and Competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.0</td>
<td>Hours/Week</td>
<td>Lectures 1</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Pre/Co –</td>
<td>Lab/Assignments 3/1</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Design a robot to perform a simple task
2. Identify what sensors and actuators are most appropriate for a simple robot

Outline Syllabus

1. **Introduction to Autonomous Mobile Robots (4 h):** Sense-think-act cycle of autonomous mobile robots, basic mobile platforms, Robot system design, power and control issues of mobile robots.

2. **Sensors and Actuators Motors (10 h):** Operating principle and control techniques of DC, stepper, and servo motors, interfacing motors to microcontroller boards. Operating principle of IR, switch, sonar, and compass sensors, microcontroller interface for these sensors.

3. **Building robots:** Design a fully autonomous robot for a given competition task, robot task planning, working with a microcontroller based robot programming board, sensors and actuator integration, programming control algorithms, tuning controller gains, troubleshooting sensors, motors and control algorithms.
Semester 4 Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2110</th>
<th>Module Title</th>
<th>Electronics III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Hours/Week | Lectures | 3 | Pre/Co – requisites | - |
| Lab/Assignments | 3 | | |

Learning Outcomes

At the end of the module the student will be able to:

1. Analyze first order filter circuits
2. Select a power amplifier for a given application
3. Explain characteristics of power electronic devices
4. Analyze timing related issues in digital circuits
5. Design and implement digital circuits using programmable logic devices

Outline Syllabus

1. **First order filter design (6 h):** Passive and active filters, frequency analysis, poles, zeros, Bode plots.
2. **Power amplifiers (6 h):** Classes of amplifiers, characteristics of amplifiers.
3. **Power electronic devices (10 h):** Properties and characteristics of power electronic devices, power electronic circuits, switching circuits.
4. **Timing analysis of digital circuit (4 h):** Gate delays, propagation delays, hazards, operating frequency, stability, case study simple RS232 communication link.
4. **Programmable Logic Devices (6 h):** ROM, PALs and PLAs, simulation and synthesis of digital circuits using FPGAs and HDL.
5. **Design Projects based on amplifiers, power electronic devices and programmable logic devices (10 h)**
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2073</th>
<th>Module Title</th>
<th>Analog and Digital Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.0</td>
<td>Hours/Week</td>
<td>Lectures 3</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td>Lab/Assignments 3 Pre/Co – requisites -</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Analyze different analog modulation schemes theoretically in order to discriminate between them
2. Explain the reasons for the use of different analog modulation schemes in different applications
3. Analyze the representation of analog signals in digital form
4. Identify and compare the distinctive features and advantages of different types of PCM techniques in order to select the most appropriate technique for a given scenario
5. Apply mathematical and geometrical representation of signals for baseband communication systems in order to design and analyze signal sets.

Outline Syllabus

2. **Angle Modulation (8 h):** Review of phase and frequency modulation, and spectra. Generation and demodulation of FM signals, pre-emphasis and de-emphasis in angle-modulated systems, FM receivers, and performance analysis in noise.
3. **Applications of Analog Modulation (6 h):** Radio and TV broadcasting, AM and FM broadcast technical standards. Applications in navigation.
4. **Digitization of Analog Signals (10 h):** Sampling theorem: Nyquist rate, ideal sampling and reconstruction, practical issues, pulse amplitude modulation (PAM), quantization, pulse code modulation (PCM): sampling, non-uniform quantization, and encoding, bandwidth and noise considerations in PCM, differential PCM, delta modulation and linear predictive coding.
5. **Baseband Digital Transmission (12 h):** PAM signals and their power spectra, line codes and their spectra, geometric space representation of signals and noise, and performance analysis in AWGN channels: optimum detectors for binary polar signaling and general binary signaling, and space analysis of optimum detection.
Module Code | EN2083
---|---
Module Title | Electromagnetics
Credits | 4.0
GPA/NGPA | GPA
Hours/Week |
Lectures | 3
Lab/Assignments | 3
Pre/Co–requisites | -

Learning Outcomes

At the end of the module the student will be able to:

1. Explain the concepts of static electric and magnetic fields within and at the boundaries of different media.
2. Use appropriate techniques to calculate the capacitance and inductance for different transmission lines and waveguide geometries.
3. Apply Maxwell’s equations to electromagnetic wave propagation scenarios in dielectric media, conducting media and waveguides.
4. Analyze simple antenna structures.

Outline Syllabus

1. **Static Electric & Magnetic Fields (8 h):** Poisson’s and Laplace’s equations and their applications. Integral and differential forms of Gauss’s and Ampere’s law applied to static electric and magnetic fields. Capacitance and inductance of twin lines and coaxial lines, boundary conditions, effect of earth on transmission line properties.

2. **Dynamic Fields (4 h):** Faraday’s Law, Maxwell’s equations and their uses in communications.

3. **Plane Wave Propagation (8 h):** Concepts of electromagnetic wave propagation, uniform plane wave propagation in a dielectric and conducting media, intrinsic impedance of a medium, phase velocity, group velocity, propagation constant, Poynting's theorem, skin depth, boundary conditions, reflection and transmission coefficients of electromagnetic waves at normal incidence, oblique incidence, Brewster angle, critical angle, polarization.

4. **Transmission Lines (6 h):** Distributed component model, characteristic impedance, propagation characteristics, reflection, voltage standing waves, Smith chart and impedance matching.

5. **Guided Wave Propagation (6 h):** Introduction to metal waveguides, wave propagation through a rectangular and circular metal waveguide, TE and TM modes, power flow through a waveguide, cavity resonators.

6. **Antenna Basics (4 h):** Isotropic and anisotropic radiators, antenna radiation patterns, directivity, gain, antenna aperture, retarded potentials, radiation, near field and far field, types of antennas.

7. **Wire Antennas (6 h):** Dipoles, monopoles, antenna arrays.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2510</th>
<th>Module Title</th>
<th>Digital Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>GPA/NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td>Pre/Co – requisites</td>
<td>EN1060</td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Design a filter for given specifications
2. Discuss the Fourier transform in discrete time and discrete frequency domains
3. Analyze a given filter for performance and stability
4. Discuss the impact of finite precision arithmetic
5. Discuss the need for adaptive filtering
6. Implement digital filters in hardware

Outline Syllabus

1. **Discrete-Time Signals and Systems (4 h):** Review discrete time signals and systems
 Representation of discrete-time signals and systems, linear time invariant systems
2. **Filter Design (12 h):** Specifications, design approaches: Finite Impulse Response and Infinite Impulse Response filters
3. **Realization of Filters (6 h):** Structures for discrete-time systems
4. **Fourier Transform in Discrete Domains (6 h):** Discrete-time Fourier transform, discrete Fourier transform, fast Fourier transform
5. **Stability and Performance of Filters (4 h):** Frequency and Z-domain analysis of filters
6. **Finite Precision Arithmetic (3 h):** Design decisions, impact on filter stability and performance
7. **Introduction to Adaptive Filtering (4 h):** Classification and basic principles
8. **Platforms for Hardware Implementation of Digital Filters (3 h):** Dedicated DSP hardware, DSP Microcontrollers, FPGA
Module Code: EN2550 Module Title: Fundamentals of Image Processing and Machine Vision

Credits: 2.5
GPA/NGPA: GPA

Hours/Week
Lectures: 2
Lab/Assignments: 3/2

Pre/Co-requisites: -

Learning Outcomes
At the end of the module the student will be able to:
1. Apply image processing algorithms for image enhancement
2. Apply machine vision algorithms for detection and recognition
3. Design machine vision solutions for common industry problems

Outline Syllabus
1. **Describe the digital representation of images (2 h):** representation of a grayscale digital image as a 2-D array of numbers, representation to color images, concepts of resolution and DPI, interpolation algorithms for image scaling.
2. **Image processing (6 h):** point and neighborhood operations for image enhancement, 2-D Fourier techniques frequency-domain algorithms to replicate spatial domain operations, morphological operations.
3. **Machine vision (8 h):** cameras and fundamental multiple view geometry, basic segmentation algorithms, simple classifiers, detection and recognition.
4. **Industry applications of image processing (4 h):** photo processing for printing, medical image processing.
5. **Industry application of machine vision (4 h):** camera as a measurement device, vision for automation.
6. **Case studies of image processing and vision in practice (4 h)**
Module Code: EN2560
Module Title: Internet of Things Design and Competition
Credits: 2
Hours/Week: Lectures 1, Lab/Assignments 3
GPA/NGPA: GPA, Pre/Co – requisites -

Learning Outcomes
At the end of the module the student will be able to:
1. Explain the concept of IOT and the system view
2. Analyze the characteristics of IOT devices
3. Develop specifications of an IOT device
4. Design and implementation of an IOT based system
5. Evaluation of performance of IOT devices

Outline Syllabus
1. IOT (2 h): Concept of Internet-connected devices and the system, its applications.
2. Device Characteristics (2 h): Sensor types, ultra-low power requirements for processors and communication links.
5. Evaluation of Performance of an IOT System (2 h): Robustness (predictability and consistency of response), response time, power consumption.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3023</th>
<th>Module Title</th>
<th>Electronic Design Realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td>Pre/Co –</td>
<td>EN1070</td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>3</td>
<td>requisites</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify a suitable design model for a given problem
2. Design testable PCBs complying to industry standards
3. Design product enclosures complying to industry standards
4. Prepare proper documentation for electronic design
5. Apply the knowledge gained to a commercial design project resulting in a working prototype.

Outline Syllabus

1. **Design models (2 h):** User centered design, design driven innovation
2. **User centered design (4 h):** Need analysis, conceptual design, detail design, design iterations
3. **Design driven innovation (2 h):** Existing meaning, quiescent meaning, technology epiphany, design interpreters
4. **Circuit design and Prototyping (6 h):** Top-Down/Bottom-Up approaches, schematic design, HDL design, simulation and verification, PCB prototyping
5. **Testing (6 h):** Test coverage, boundary scanning, test vector generation, prototype testing and design verification, product testing and quality assurance
6. **Enclosure Design (4 h):** Solid modeling and visualization, rapid prototyping, mould design, tool design
7. **Documentation (4 h):** User manuals, maintenance manuals, QC manuals, design manuals
8. **Design Assignment:** Group based commercial design project covering following aspects
 a) User need surveys / Quiescent meaning,
 b) PCBs meeting industry standards/norms,
 c) Enclosures meeting industry standards/norms.
 d) Design documentation
Module Code | EN3030 | Module Title | Circuits and Systems Design
Credits | 4.0 | Hours/Week | Lectures 3 | Pre/Co – requisites | EN2110
GPA/NGPA | GPA | GPA |
Learning Outcomes
At the end of the module the student will be able to:
1. Explain the effects of negative feedback on the performance of electronic circuits
2. Design and analyze analog circuits, such as second order filters, oscillators, phase locked loops, linear power supplies
3. Analyze effects of noise in Electronic Circuits
4. Design and implement sequential systems using RTL based approach
5. Design and implement 8 bit non-pipelined processor
6. Analysis of timing related matters in digital systems
Outline Syllabus
1. **Feedback (6 h):** General feedback structure, negative feedback, properties of feedback circuits, loop gain and stability
2. **Analog filter design (4 h):** Second order passive and active filter design, and Butterworth, Chebyshev approximations
3. **Oscillators (4 h):** Astable, mono-stable, and bi-stable multi-vibrators, Schmitt triggers
4. **Phase locked loops (2 h):** Operating principles, PLL types, and frequency synthesis
5. **Linear power supplies (4 h):** Voltage regulators, and protection circuits
6. **Noise Analysis (4 h):** S/N, Noise figure, noise temperature, Low Noise Amplifiers (LNA)
7. **RTL design, implementation and verification (8 h):** Sequential System Design using RTL based approach and its HDL implementation, introduction to functional and logic verification
8. **Processor Design and Implementation (8 h):** Instruction set architecture, RISC architecture, data path and controllers, Cache memory design, memory interfacing, RAM, ROM, EPROM, SRAM, DRAM, memory cells
9. **Timing Analysis (2 h):** Determination of operating speed of digital systems (longest delay path), different delay types, clock synchronization issues
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3053</th>
<th>Module Title</th>
<th>Digital Communications I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.0</td>
<td>Hours/Week</td>
<td>3</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Pre/Co – requisites</td>
<td>3</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Analyze different digital modulation techniques theoretically in order to discriminate between them.
2. Design optimum receivers for linear modulation schemes in AWGN channels.
3. Design signals for communication over bandwidth constrained channels.
4. Examine signal distortions introduced by the channel and design a linear equalizer for a given situation.
5. Compare and contrast broadband communications technologies with conventional modulation schemes in order to appreciate their advantages and applications.

Outline Syllabus

1. **Digital Carrier Modulation Techniques (12 h):** Bandpass signals and systems: complex envelope representation and signal-space representation, linear digital modulation techniques: ASK, PSK, and QAM. OQPSK and π/4 -QPSK, nonlinear modulation techniques: FSK, minimum shift keying, and GMSK, power spectra and spectral efficiencies, coherent receivers, and digital subscriber lines and modems.

2. **Receiver Design for AWGN Channel and Performance (12 h):** Optimal detection of signals in noise: detection signal space, correlation detector, matched-filter detector, maximum a posteriori and maximum likelihood detectors, performance of optimum receivers for linear modulation schemes: optimal decision regions and error probability.

3. **Signal Design for Bandwidth-Constrained Channels (12 h):** Characterization of band-limited channels, signal design for band-limited channels: band-limited signals for no ISI, Nyquist criterion, band-limited signals with controlled ISI-partial response signals, and detection of duobinary signaling and differential encoding, channel equalization: need for equalization, and ZF and MMSE equalizers, eye diagrams.

4. **Introduction to Broadband Technologies (6 h):** Principles of multicarrier modulation and spread spectrum communications, characteristics, advantages and applications.
Module Code | EN3143
Module Title | Electronic Control Systems
Credits | 3.0
Hours/Week |
Lectures | 2
Lab/Assignments | 3
Pre/Co – requisites | -

Learning Outcomes
At the end of the module the student will be able to:

1. Identify historical apparatus where negative feedback mechanism is used.
2. Analyze and model physical systems using laws of nature.
3. Design a feedback control system and analyze its performance and stability.
4. Implement analog and digital controllers.

Outline Syllabus

1. **History of Control Engineering (2 h):** Historical apparatus based on negative feedback mechanism (water clock, flyball governor)

2. **System modeling (10 h):** modeling mechanical systems using Newton’s laws, and electrical systems using Kirchoff’s laws, system model ODE, transformation to Laplace domain, transfer function, second order systems (damping ratio and natural undamped frequency): rise time, peak time, peak overshoot, setting time

3. **Feedback controller design (12 h):** single feedback gain controller, Root locus design, pole location by gain tuning, Bode (gain and phase) design, lead, lag and notch filter design, pole-zero cancellation, stability analysis, PID controller design. Controller simulation using Matlab/Simulink, Servo controller design for a given specification.

4. **Controller Implementation (4hr):** Op-Amp implementation of analog controller, discretization of controllers for digital controller design, Digital controller implementation using microcontrollers
Industrial Training Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3992</th>
<th>Module Title</th>
<th>Industrial Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>6.0</td>
<td>Hours/Week</td>
<td>Lectures</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>NGPA</td>
<td>Pre/Co –</td>
<td>Lab/Assignments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>requisites</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Appreciate the differences between academic and industrial environments
2. Value the training institutions relevance to engineering and engineering management
3. Relate the knowledge gained via training to the project which will be assigned and bring it to completion
4. Adhere to engineering ethics, industrial safety standards and processes
5. Present the findings in a training report.

Outline Syllabus

1. **Induction:** This is an initial period to help the student in the transition from academic to industrial life. The students should meet his/her Mentor to discuss the contents and the objectives of training. He/She should also receive information about the training organization, its products or services and the terms and conditions of employment.

2. **Practical Skills:** During this period the student should receive instructions in the practical skills essential for his/her future employment. It should also include an appreciation of the work of others in converting an engineering design into a final product (if appropriate).

3. **General Engineering Training:** In a large organization this should include an introduction to the work done in a number of departments. Under these circumstances, the student may eventually be working as a member of a team in the organization. The student should be made aware of the management and administration sectors of the organization.

4. **Directed Objective Training:** The major part of the training should have directed application to the activity which the student intends to follow after the training program (activities should be relevant to the major in which the student will be graduating in). At this stage the student should be encouraged to work on a real project and be given increasing responsibility for independent work to establish interest and confidence in his/her work. *Most of the training time will cover Design and Development, Documentation and Data preparation, and commissioning. The student should also have a thorough understanding of the operations of the training place in the Electronics and Telecommunication Engineering context.*
Semester 6 Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3110</th>
<th>Module Title</th>
<th>Electronic Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss the basics of quantum mechanics in order to characterize electronic devices
2. Explain the principles underlying the behavior of electronic devices
3. Explain the principle of operation of lasers and applications of lasers

Outline Syllabus

1. **Quantum Mechanics (20 h):** Wave-particle duality of light and matter, Schrödinger wave equation: Band theory of solids, E-k diagram, Fermi-Dirac statistics and Fermi Level.

2. **Electronic devices (12 h):** Conduction in metals and semiconductors. Conduction in p-n junction devices, diffusion and junction capacitance of a p-n junction, diodes characteristics, bipolar junction transistors, field effect transistors, microwave devices.

3. **Lasers and optical resonators (10 h):** Energy levels and stimulated emission of radiation.
Module Code | EN3223 | Module Title | Electronic Manufacturing Systems
--- | --- | --- | ---
Credits | 3.0 | Hours/Week | Lectures 3, Pre/Co – requisites EN1070, EN3023
GPA/NGPA | GPA | Lab/Assignments -

Learning Outcomes

At the end of the module the student will be able to:

1. Design an electronic product manufacturing process
2. Carry out production planning and production control
3. Carry out raw material control
4. Apply productivity improvement techniques and manufacturing information management techniques

Outline Syllabus

1. **Electronic product manufacturing process (8 h):** Manufacturing process design and engineering, translation of product design information to manufacturing information
2. **Production processes (6 h):** Production planning, scheduling, production strategies: make-to-order, make-to-stock
3. **Material control system (4 h):** Incoming raw material control, material ordering and stocking, Cumban system
4. **Product fabrication, assembly, testing, repair and quality control (6 h)**
5. **Productivity improvement, manufacturing information management (4 h)**
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3240</th>
<th>Module Title</th>
<th>Embedded Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss the performance requirements of an embedded system in terms of power consumption, resource utilization and real time response.
2. Explain the functionality of modules and their interconnections of a typical embedded system in consumer and industrial domains.
3. Explain the performance requirements expected from the software layer in an embedded system.
4. Evaluate different processors and Micro-controllers available for embedded systems.
5. Design an embedded system to meet a given specification.

Outline Syllabus

2. **Embedded Systems Architecture, Development Flow and Design Methodologies (6 h).**
3. **Embedded Hardware (6 h):** Soft and Hard Processors, Microcontrollers and Peripherals, Programmable System On Chip (PSOCs) with custom and third party IP cores.
5. **Hardware-Software Co-Design, Debugging and Testing (4 h).**
6. **Interfacing Memory and Peripherals (2 h):** Buses, Interrupts, Timers, Analog Inputs.
7. **Power Management, System Robustness, Optimizations and Security Concerns (2 h).**
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3250</th>
<th>Module Title</th>
<th>Internet of Things</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>GPA</td>
<td>GPA</td>
</tr>
<tr>
<td>Hours/Week</td>
<td>Lectures</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lab/Assignments</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss the concept of IOT and Smart X
2. Discuss the characteristics of IOT devices
3. Evaluate the technologies available for IOT
4. Evaluate the performance of IOT devices
5. Discuss security concerns of IOT
6. Discuss the user expectation and social impact of IOT devices

Outline Syllabus

1. **Internet of Things (4 h):** The concept of Internet connected devices and its applications, Smart X, machine to machine (M2M) technologies, collaboration between devices in a distributed systems, micro and Nano scale devices, cloud concept and devices for the edge of the cloud
2. **Device Characteristics (4 h):** Always on and always aware, adaptability, autonomous behavior, dependability, controllability, self-sustainability (ultra-low power consumption)
3. **Technologies for IOT (10 h):** Sensors, low power and ultra-low power processors, ultra low power communication technologies, energy aware algorithms, energy harvesting
4. **Performance of IOT Device (4 h):** Response time, predictability and consistency of responses, self-sustainability (ultra-low power consumption and energy harvesting)
5. **Security concerns of IOT (2 h):** Collection of data and the threat of data leakages (privacy issues), security concerns linked to remote controllability of devices
6. **Analysis of use expectations and social impact of IOT devices (4 h):** Examples such as IOT devices used as a personal protection device and its social impacts
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3370</th>
<th>Module Title</th>
<th>Traffic Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>GPA</td>
<td>GPA</td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe the different queuing theories related to telecommunication systems and their impact on modeling of telecom networks
2. Apply appropriate queuing models to analyze a real world application
3. Assess the need for traffic engineering in core networks
4. Model network traffic
5. Apply the knowledge of traffic theory to simulate real networks
6. Analyze the performance of scheduling algorithms used in networks

Outline Syllabus

1. **Review of random processes (4 h):** Definition of random processes, statistics of random processes, stationarity and ergodicity, Markov chains and Markov processes
2. **Queuing theory (6 h):** Poisson processes, Little’s formula, birth and death processes, M/M/x/x queues, Erlang formulas, dimensioning of loss and delay systems, performance evaluations
3. **Network traffic (4 h):** Flow traffic models, continuous and discrete time modeling, self-similar traffics, Pareto distribution
4. **Fluid Flow Analysis (4 h):** On-off sources, infinite and finite buffers, leaky bucket, equivalent bandwidth, long range dependent (LRD) traffic
5. **Traffic Simulation (4 h):** Random number generation, discrete event simulation, time driven simulation, event driven simulation
6. **Traffic Measurement (2 h):** Common traffic parameters, measurements recommended by ITU-T
7. **Application examples (4 h):** Traffic & mobility modelling in communication networks, switches and routers
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3532</th>
<th>Module Title</th>
<th>Electronic Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>GPA/NGPA</td>
</tr>
<tr>
<td>GPA/GPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>EN1013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe characteristics of electronic instruments
2. Explain the operational principles of electronic measuring instruments
3. Analyze measurement errors and improve the accuracy of measurements
4. Design a simple measuring instrument

Outline Syllabus

1. **General Measurement Theory (2 h):** The foundations of electronic measurement theory, measurement errors and error reduction techniques, factors influencing measurement errors, Signals and noise in measurement systems
2. **Generalized Performance Characteristics of Instruments (2 h):** Static characteristics, dynamic characteristics
3. **Fundamental Operational Principles of Instruments (8 h):** Voltmeters and ammeters (analog and digital), signal sources and function generators, oscilloscopes and their measurements, electronic counters power supplies, spectrum and network analyzers, logic analyzers
4. **Transduces and bridges (4 h):** Types of transducers and ac and dc bridges
5. **Instrumentation Circuits (4 h):** Signal conditioning, instrumentation amplifiers, data acquisition and transmission circuits
6. **Instrument Usage (4 h):** Probes and other attachments, grounding and shielding design, choosing instruments for a given instrumentation environment
7. **Control in Electronic Instruments (4 h):** Use of embedded control in instrumentation
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN3210</th>
<th>Module Title</th>
<th>Self Initiated Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Lectures</td>
<td>-</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Pre/Co –</td>
<td>-</td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td>requisites</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Generate self motivation and enthusiasm about problem analysis and solution.
2. Discover creative ways of solving an identified program.
3. Apply a multidisciplinary approach as appropriate towards solving an identified problem.
5. Present a solution orally and in writing.

Outline Syllabus

1. **Problem identification:** Identify an existing problem in industry or in society
2. **Domain knowledge:** Gather domain knowledge related to the identified problem and collaborate with resource persons having domain knowledge,
3. **Problem solution:** Adopt the correct problem solving approach towards solving an identified problem
4. **Case study:** Study and critically evaluate existing solutions to identified problems and propose improvements
5. **Technical presentation:** Present a solution to an identified problem in a professional manner. Prepare a technical report describing the solution.
Module Code | EN3900
---|---
Module Title | Seminar
Credits | 2.0
Hours/Week |
Lectures | 2
Lab/Assignments | -
Pre/Co requisites | -

Learning Outcomes

At the end of the module the student will be able to:

1. Demonstrate theoretical knowledge, analytical skills, as well as methodological, research design and problem-solving skills applied to novel problems of a multidisciplinary nature.
2. Demonstrate skills in identification of the key issue and the ability to formulate a solution based on the interests of the different stakeholders.
3. Give constructive criticism and accept feedback as part of the process of peer review.
4. Demonstrate good project management, teamwork and communication skills in oral and graphical presentation.

Outline Syllabus

1. Technical and within Industry, exposing novel technological advances.
2. Problem from outside of the industry (e.g. medicine and biology) requiring a multidisciplinary solution involving electronics & telecommunications.
3. Exposing students to new way of thinking leading to creativity and innovation.
4. Exposing students to the marketing and business development aspect of life.
5. The technological innovations and their implications health, culture and society (e.g. Smart apps leads to dumb users- A case study).
6. The Legal, ethical and safety implications of product development.
7. The use of Appropriate sustainable solutions for the developing world (e.g. Prosthetics in rehabilitation).
8. Student Presentations - 3 per week (40 min/presentation) → 7 weeks to cover 20 presentations → 20 x 5 = 100 students.
Semester 7 Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4202</th>
<th>Module Title</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>10.0</td>
<td>Lectures</td>
<td>-</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>-</td>
</tr>
<tr>
<td>Hours/Week</td>
<td>-</td>
<td>Pre/Co – requisites</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify a real-world problem of sufficient complexity that can be solved using the technologies learnt during the undergraduate career within a given time frame
2. Appreciate the need for group work in solving real-world problems and the role of the individual
3. Demonstrate the skills required for writing a project proposal and associated business plan for the problem identified
4. Defend the proposal drafted for solving a real-world problem
5. Apply the knowledge gained to determine alternative approaches to solving the problem
6. Analyze different approaches to solve the identified problem
7. Evaluate the different approaches to find the most suitable one
8. Design and develop the solution using the selected approach
9. Evaluate the effectiveness of the solution
10. Justify the methods adopted in the solution
11. Compile a comprehensive document detailing all aspects related to the project.

Outline Syllabus

1. **Investigation Stage:** The student should be capable of independently referring to books, papers, academic literature and electronic resources to justify their choice of project. Conduct a literature survey in order to academically support any claims, technologies and methods used in your project. This phase should also be used to determine if there are other methods that have been used to address the same or similar implementation aspects of your project. As a consequence of this activity, the student should now have a number of sources of information upon which to base the work that is to follow. Identifying or estimating the hardware and software components required for the successful implementation of the proposed project is also carried out within the scope of this phase

2. **Implementation Stage:** Once the preliminary investigation is carried out and a project of appropriate complexity is chosen, the next stage is to design and implement the prototype. Identifying the proper approach of implementation is also key to completing the project successfully. Use design software, simulation to support your design strategies. The implementation phase includes construction and testing of the prototype. A major portion of the time should be spent with this phase. At the implementation stage, the student is allowed to alter or modify the methodologies proposed in the previous phase depending on any new information available at this stage

3. **Presentation Phase:** Placing the work in context and presenting it effectively is also an important part of the project. Effective presentation of the project material and a well-structured report is expected for the satisfactory completion of the final year project. The documentation and knowledge preservation includes a presentation, report, DVD with structured information as well as a viva
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4820</th>
<th>Module Title</th>
<th>Ethics and Legal Fundamentals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
<td>Hours/Week</td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>1 Pre/Co-requisites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignment</td>
<td>--</td>
</tr>
</tbody>
</table>

Learning Outcomes
At the end of the module the student will be able to:
1. Identify the distinction between law and ethics.
2. Assess a situation in a professional or academic environment from an ethical and legal perspective.
3. Investigate the safety of a product from ethical and legal standpoints.

Outline Syllabus
- **Introduction (2 hours)**
 Social motivation for law and ethics, basic definition and distinction of law, morality, conscience and ethics.
- **Legal Fundamentals (2 hours)**
 Types of law, sources of law, interpretation of laws, natural justice and due process of the law, legal system of Sri Lanka, evidence, relevant laws in engineering (industrial relations, commercial law, contract law, intellectual property laws etc.), regulations, legal remedies, contempt of court, jurisprudence.
- **Ethics (2 hours)**
 Types of ethics based upon formulation and application, ethics in professional and engineering environments, remedies for misconduct.
- **Safety Engineering (2 hours)**
 Ethical and legal background, guidelines for safety, safety standards: regulations, compliance and hazard reporting, case studies (e.g. Ford Pinto case, Therac-25 case, Airline Cargo Door cases, etc.).
- **Research and Academic Ethics (2 hours)**
 Misconduct during research: fraud, fabrication and plagiarism, informed consent, ethical standards during experimentation, teaching ethics and misconduct.
- **Supplementary Work (6 hours)**
 Time to be utilized for possible guest lectures, field visits and discussion forum etc.
Module Code: EN4932 Module Title: Technical and Scientific Writing

Credits: 1.0 Hours/Week: Lectures 1/2 Lab/Assignments 3/2

Learning Outcomes
At the end of the module the student will be able to:
1. Identify key characteristics of an effective technical document.
2. Develop an appropriate structure for a technical document.
3. Convey information effectively using proper language, writing style and illustrations.
4. Carry out and present a literature review as required in a technical document.
5. Use appropriate tools to create technical documents in a professional manner.

Outline Syllabus

2. **Structuring a document (1 1/2 h):** General structure of a document. Guidelines for creating chapters, sections and subsections. Guidelines on developing specific chapters/sections such as the abstract, introduction and the conclusion.

3. **Language and illustrations (1 h):** Constructing paragraphs, sentences. Using words in an appropriate manner, punctuation, mechanics. Using illustrations, tables etc. to convey information succinctly.

4. **Literature review and referencing (2 h):** What is a literature review? Guidelines on carrying out a critical literature review and presenting the findings in a technical document. Definition of plagiarism and how to avoid it. Techniques for citing references, cross references, bibliography. Basic structure and formats of accepted referencing styles. Tools for managing bibliographies.

5. **Tools for documentation (2 h):** Use of several types of document preparation software such as Microsoft Word, Latex. Preparing and using templates for document creation.

6. **Hands-on exercises:**
 - Create a one-page document with a specific purpose for a specific audience
 - Case study of a published technical article giving due consideration to its structure, writing style and overall effectiveness
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4063</th>
<th>Module Title</th>
<th>Digital IC Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td>Lab/Assignmen</td>
<td>3</td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Explain the digital IC design concepts
2. Recognize the technical challenges in digital IC design
3. Demonstrate the proficiency in VLSI design tools widely used in industry
4. Design and analyze the digital VLSI circuits at various design stages from functional design, logic design, circuit design, to physical design

Outline Syllabus

1. **Digital design Concepts (8 h):** Introduction to digital IC design, Digital design basics, RTL to netlist mapping, synthesis, high fan-out synthesis, clock tree synthesis
2. **Design for Test (4 h):** Define test modes, DFT insertion techniques
3. **Backend Design (6 h):** floor plan, place & route, layout verification, IO design
4. **IP Development (4 h):** IP design flow, IO definition, test methodologies, characterization of IPs
5. **RTL2GDS Flow (6 h):** Familiarize with tools required for synthesis, place & route, timing analysis, and layout verification, design related problems and fixes
6. **Digital design Concepts (8 h):** Introduction to digital IC design, Digital design basics, RTL to netlist mapping, synthesis, high fan-out synthesis, clock tree synthesis
Module Code: EN4213
Module Title: Power Electronics
Credits: 3.0
Hours/Week: GPA/Lectures: 2
Pre/Co-requisites: Lab/Assignments: 3

Learning Outcomes
At the end of the module the student will be able to:
1. Describe the fundamental principles of different power electronic devices
2. Identify different applications in power electronics
3. Design various power electronic devices and circuits
4. Analyze power electronic circuits with the knowledge of power electronic devices and controllers

Outline Syllabus
1. Fundamentals of Power Electronics (2 h): Introduction to power electronics, fundamentals of power electronics, devices and considerations
2. Thermal Management of Power Devices (2 h): Thermal management, heat sink calculation and power devices selection on thermal aspects
3. Drive and Protection Circuits (4 h): Drive circuits of power semiconductor devices, high side drivers and operation, protection circuits and measures, snubber circuits, over voltage and over current protection, EMI aspects
4. DC / DC Converters (4 h): Design of buck, boost and buck-boost converters, characteristics and practical aspects
5. Inverters (4 h): Voltage source and current source inverters, PWM, hysteresis and resonance pulse inverters, applications and control methods
6. Advanced Power Supplies (8 h): Switching regulators, switch mode power supplies, uninterrupted power supplies
7. Motor Controlling (2 h): AC, DC and BLDC motor controlling methods and design
Module Code | EN4053 | Module Title | Digital Communications II
---|---|---|---
Credits | 3.0 | Lectures | 2
GPA/NGPA | GPA | Lab/Assignments | 3
Hours/Week | | Pre/Co – requisites | -

Learning Outcomes

At the end of the module the student will be able to:

1. Select an appropriate source coding technique for a given application
2. Explain the underlined principles of optimal quantization of sampled analog signals
3. Design a lossless source code for a given discrete memory-less source to improve efficiency of transmission
4. Perform encoding and decoding operations pertaining to block and convolutional codes
5. Apply error control coding for the improvement of reliability of digital communication systems.
6. Explain the basic concepts of data encryption and decryption, and different ways of using them in securing communication systems.

Outline Syllabus

2. **Channel Coding (10 h):** Introduction to error control coding. Linear block codes: matrix representation of block codes: generator and parity check matrices, cyclic codes, error detection and correction capabilities, hard decision decoding: syndrome decoding, and examples of common linear block codes, Convolutional codes: convolutional encoding, state transition diagram and trellis diagram, minimum free distance, maximum likelihood decoding: hard-decision and soft-decision decoding, and the Viterbi algorithm, and Introduction to advanced error control techniques: HARQ, turbo codes, and LDPC codes.

3. **Data Encryption and Decryption (8 h):** Introduction to cryptosystems, secrecy of a cipher system, Symmetric key cryptosystem: stream ciphers and block ciphers, Data encryption standard (DES), Advanced encryption standard (AES), Public key cryptosystems: principles and practical aspects, and RSA cryptosystem, pretty good privacy.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4313</th>
<th>Module Title</th>
<th>Telecommunication Core Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>CS3032</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss the requirements of core networks
2. Discuss the impact of convergence to IP based protocols
3. Discuss key design issues in core networks
4. Discuss key core network technologies
5. Design of Voice over IP (VOIP) and Video on Demand (VoD) networks
6. Analyze the applicability of Software Defined Networks (SDN) to different networking scenarios

Outline Syllabus

1. **Evolution of Core Networks (2 h):** PDH, SDH, SONET, Frame Relay, ATM, IP
2. **Core Network Requirements (2 h):** Scalability, reliability, predictability, quality of service, traffic engineering, fault detection and monitoring, support of multiple services such as virtual private networks, optimal utilization of infrastructure
3. **Signaling (4 h):** Signaling in IP based and mobile core networks
4. **Convergence (2 h):** Convergence of multiple services to IP (voice, video conferencing, video streaming, video on demand, quality of service expectations, best effort nature of packet networks
5. **Design of core networks (4 h):** Design decisions related to core network requirements, analyze the limitation of LAN technologies in terms of scalability and monitoring
6. **Core network technologies (8 h):** Multi-Protocol Label Switching (MPLS), Ethernet for WAN, multicasting, synchronization techniques in mobile backhauling
7. **Design of VOIP and Video on Demand networks (4 h):** Analysis of requirements, technologies for voice and video compression, elements of a VOIP and Video on Demand networks, signaling.
8. **Software Defined Networks (2 h):** Introduction to the concept and an analysis of its applicability to different networking scenarios
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4363</th>
<th>Module Title</th>
<th>Microwave Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td></td>
<td></td>
<td>EN2053</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Explain the use of microwave communication systems in providing telecommunication and data communication solutions
2. Describe the use of satellites for communications
3. Design the RF links in terrestrial and satellite microwave communication systems and propose suitable protection methods for system reliability.
4. Plan and propose microwave link solutions to the communication problems in the industry.

Outline Syllabus

1. **Principles of Terrestrial Microwave Communication (4 h):** Principles of tropospheric wave propagation: reflection, refraction, diffraction and absorption effects
2. **RF Link Design for Terrestrial Microwave Communication (6 h):** Path design, fading and fade margin, link power budget
3. **Reliability Measures (4 h):** Protection methods and link configurations
4. **Introduction to Satellite Systems (4 h):** Concept, history, orbits, footprints, frequency bands, constellations, Subsystems in a satellite, satellite payload, digital modem techniques, applications
5. **Satellite Communication Link Design and Analysis (8 h):** Satellite RF link path design, fading and fade margin, satellite link power budget, antennas
6. **Codec design for satellite communications (2 h):** Basic principles of speech/video coding and their usage in satellite communication systems. Error control for satellite communications systems
Module Code: EN4553
Module Title: Machine Vision
Credits: 3.0
Hours/Week: Lectures 2, Pre/Co-requisites: EN2550
Lab/Assignments: 3

Learning Outcomes
At the end of the module the student will be able to:

1. Apply image processing algorithms to solve real-world problems
2. Implement representative vision algorithms that solve common machine vision problems
3. Design machine-vision systems that solve real-world problems
4. Using software tools and languages used in vision algorithm development and implementation
5. Describe current developments in machine vision

Outline Syllabus

1. Introduction and Revision (2 h): Image enhancement in optical and medical images, restoration, compression, image segmentation, multiple view geometry, camera as a measurement devise.
2. Feature detection and matching (4 h): Feature detectors (e.g., Harris, DoG), scale, rotation, affine, and illumination invariance, feature descriptors (e.g., SIFT, HOG), feature tracking.
5. Motion (4 h): Parametric motion, image stitching, sparse optic flow, dense optic flow, layered motion, applications of motion analysis.
6. Detection and Recognition (6 h): Object detection, face recognition, bag-of-words model, part-based model, recognition with segmentation, learning from large image collections
7. Recent Topics (2 h): E.g., vision for graphics, video processing, activity recognition.
8. Vision Project (2 h): Implementing a recent research paper that solves a problem appealing to the student.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4563</th>
<th>Module Title</th>
<th>Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>EN3143</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify and describe different types of robots and their applications
2. Kinematic analysis of robot arms
3. Plan a motion profile for a robot manipulators
4. Design a robot manipulator using software tools
5. Control system design for robot manipulators
6. Discuss advance applications of robotics.

Outline Syllabus

1. **Introduction** (4 h): The history and background of robotics, various robotic systems and applications (robotic surgery, planetary robots, aerial robots, underwater robots, humanoids, etc..) industrial robot manipulators (Cartesian, cylindrical, SCARA, articulated)

2. **Robot manipulator kinematics** (8 h): Co-ordinate transformation, Euler angles, fixed angles, direction cosine matrix, Euler parameters, comparison between different types of robot manipulators, DH table, rotation matrix, homogeneous transformation matrix, Kinematics and inverse kinematics of robot manipulators, Jacobian and singularity, velocity mapping between joint and Cartesian spaces, static equilibrium

3. **Motion Planning** (4 h): Cartesian space and joint space trajectory planning, Cubic polynomials, splines, straight-line trajectories, control systems for robot manipulators

4. **Robot manipulator design** (4 h): joint and link configuration, design in solid works, joint motor selection, encoder selection, simulation and verification.

5. **Manipulator control** (4 h): joint position control, inverse Jacobian control, stiffness, and compliance, force-position compliant control

6. **Advance robotic systems** (4 h): System design of advance robotic systems such as Telesurgery robots, autonomous flying robots, telepresence robots, self-driving cars and humanoid robots
Module Code | **EN4922** | **Module Title** | Research Project
---|---|---|---
Credits | 5.0 | **Lectures** | -
GPA/NGPA | GPA | **Lab/Assignments** | -
Hours/Week | | **Pre/Co – requisites** | -

Learning Outcomes

At the end of the module the student will be able to:

1. Explain specific issues related to the chosen research topic based on how concepts have been built up through cross referencing of related research material.
2. Demonstrate skills of critical comparison with similar research topics.
3. Demonstrate specific skills related to research methodologies.
4. Demonstrate programming/analytical skills required for advanced research.
5. Write a research paper of acceptable quality

Outline Syllabus

1. Research methodologies, significance of literature survey, search methodologies, formulating research ideas, referencing research.
2. Reading and reviewing research articles, formalized methods of conducting a research, developing and implementing algorithms.
3. Writing research reports, preparing a paper for publication based on research outcomes.
Semester 8 Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4020</th>
<th>Module Title</th>
<th>Advance Digital Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
<tr>
<td>Pre/Co –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>requisites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN3031</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss characteristics of complex digital systems
2. Analyze complex digital systems
3. Discuss the mapping of performance requirements to design decisions
4. Discuss the methods for functional and logic verification
5. Design of a 16 bit RISC processor with cache based memory hierarchy
6. Design and implement bus architecture for low speed and high speed peripherals
7. Discuss the need for System on Chips and Network on Chips

Outline Syllabus

1. **Complex Digital Systems (4 h):** Analysis of characteristics such as throughput, timing, stability, memory and area footprints, power budget, signal integrity, clock recovery and synchronization, Multiple clock domains, inter-connectivity of modules using FIFOs
2. **Analysis of Complex Digital Systems (6 h):** Example systems such as processors (non-pipelined and pipelined, video decoders and encoders, their timing and throughput requirements, connectivity to other dependent modules
3. **Verification (4 h):** Functional and logic verification, OVM (Open Verification Methodology) and UVM (Universal Verification Methodology), coverage, introduction to formal verification methodologies
4. **Design and Implement Complex Digital Systems (8 h):** Design methodologies (RTL and high level synthesis), design of a 16 bit RISC pipelined processor and its interfacing to memory hierarchy (Cache and Primary Memory)
5. **Design and implement simple bus architectures (4 h):** Analysis of requirements, design decisions, HDL implementation and verification
6. **System on Chip and Network on Chip (2 h):** Basic principles and methodologies for implementation
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN423</th>
<th>Module Title</th>
<th>Industrial Electronics and Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Specify the characteristics of sensors and actuators required for an automated system design
2. Model a control system
3. Select and integrate different modules to work in different environments
4. Implement a control system for a real world application

Outline Syllabus

1. **Types of sensors and actuators (6 h):** Digital sensors, analog sensors, and sensor specifications, introduction to different types of actuators including servo motors, dc motors, ac motors, grippers, manipulators, linear actuators, hydraulic and pneumatic types
2. **System modeling and control (6 h):** Control systems and control techniques, systems identification and modeling
3. **Type of systems (8 h):** SCADA systems and PLCs, peripheral devices and data communication standards
4. **Systems Integration (8 h):** Sensors, actuators and signal processing
Module Code | EN4323 | Module Title | Optical Fiber Communications
---|---|---|---
Credits | 3.0 | Hours/Week | Lectures 2, Pre/Co – requisites EN2053, EN2083
GPA/NGPA | GPA | Lab/Assignments 3 | GPA

Learning Outcomes

At the end of the module the student will be able to:

1. Investigate and evaluate the capabilities of optical components used in practical networks and R&D
2. Identify and investigate the underlying innovations behind emerging technologies in fiber optic communications
3. Design a cost effective solution for real world optical link design problems
4. Identify the practical aspects of the optical system and apply the knowledge in field activities
5. Discuss telecommunications core, metro and access network infrastructure and its role in forming an integrated telecommunications system

Outline Syllabus

1. Introduction (1 h): Introduction to optical communication systems, history of optical fiber and optical communication systems, comparison with other wired and wireless media
2. Optical fiber (4 h): Optical fiber as a dielectric waveguide, optical fiber construction and types, multimode and single mode fibers, geometric/ray optics (Snell’s law, total internal reflection, numerical aperture and V-number), wave optics (wave equation and its solutions, fiber modes)
3. Optical sources (4 h): Light emitting diodes (LED’s), laser diodes and characteristics, different types of LDs such as DFB, DBR, ECL, VCSEL, MLL and tunable lasers
4. Optical detectors and receivers (1 h): PIN photodiode, avalanche photo-diode and other photo detectors and sensors
5. Optical modulators and modulation techniques (2 h): Direct and external modulation, different types of modulators (electro optic, electro absorption and acousto-optic), different optical modulation types (ASK, FSK, nPSK, nQAM), non-return to Zero and return to zero
6. Optical amplifiers (4 h): Optical amplification theory (based on EDFA), EDFA characteristics and noise (ASE), noise figure, different types of optical amplifiers (REDOA, RA, SOA, PSA) and their applications
7. Optical channel impairments (3 h): Optical fiber attenuation, dispersion, inter-symbol interference and introduction to non-linear effects
8. Optical measurement techniques (3 h): Eye opening factor (EOF), Optical signal to noise ratio (OSNR), Q-factor, and bit error rate (for ideal condition and with different impairments)
9. Optical network components and link design (2 h): Link budget calculations and selection of optical components
10. Optical networks (6 h): Optical fibre networks (core, metro and access), different types of optical access networks (FTTx and PON), optical transmission and switching techniques (SONET, OTN, and PON standards)
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4333</th>
<th>Module Title</th>
<th>Microwave Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments 3</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Apply principles of electromagnetics to understand the behavior of microwave components and systems.
2. Use s-parameters to characterize microwave components.
3. Explain the operating principles of basic microwave devices.
4. Use basic microwave devices in designs effectively, observing safety precautions.
5. Analyze frequently employed antennas at microwave frequencies.

Outline Syllabus

1. **Microwave transmission lines and components (4 h):** Transmission line theory, impedance matching, coaxial lines, microstrips, filters, bends, couplers, junctions, lumped components.
2. **Microwave circuit theory (6 h):** s-parameters, signal flow graphs, transducer power gain.
3. **Passive Components (6 h):** Terminations, attenuators, reactive stubs, cavity resonators, T junctions, hybrid ring, directional couplers, slotted lines, ferrite filters, isolators, circulators, phase shifters.
4. **Microwave Tubes (3 h):** Magnetron, klystron, reflex klystron, traveling wave tube.
5. **Application of microwave semiconductor devices (6 hrs):** Bipolar junction transistors, field effect transistors Gunn diode, PIN diode, varactor diode, tunnel, diode, backward diode, Schottky diode, point contact diode, IMPATT diode.
6. **Microwave Antennas (3 h):** Horn antenna, helical antenna, phased arrays, reflector antennas, patch antennas.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4353</th>
<th>Module Title</th>
<th>Radar and Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments 3</td>
<td>Pre/Co - requisites EN1060 EN2510</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Distinguish between different radar system architectures and configurations, and critically assess their specializations.
2. Identify different navigational aids.
3. Identify the role of satellite communication in modern navigation.
4. Design of radar systems and navigational aids, by applying fundamental engineering concepts found in microwave engineering, atmospheric propagation of electromagnetics, electronics and signal processing.
5. Critically assess system parameter values needed for successful operation of radar and navigational systems under different operating environments.
6. Define pulse compression and analyze the time frequency characteristics of different waveforms.
7. Investigate target tracking using Bayesian philosophy, design appropriate algorithms for simple and maneuvering targets under different environments.

Outline Syllabus

1. **Radar system overview (2 h):** Modern radar systems for different applications, Radar equation in free space, Attenuation correction
2. **Radar Receiver system analysis (8 h):** Target detection in noise, Constant false alarm rate Detection, match filter ambiguity function, Pulse compression using waveform modulation
3. **Radar target tracking (6h):** Introduction Bayesian filtering leading to Kalman filtering of single non maneuvering target, Tracking of maneuvering targets using nonlinear filtering (EKF, UKF, Particle filtering), Target tracking with Clutter and ECM
4. **MIMO radar (4hours):** Phase array radar, Adaptive Beam forming, Cognitive radar, Radar networks
5. **Navigational Aids En-route and Landing (4 h):** Secondary radar, DVOR / DME, Instrumental landing systems
6. **Satellite based navigation system (4 h):** Satellite based navigation, Ground based / Satellite based augmentation systems
Module Code: EN4383
Module Title: Wireless and Mobile Communications

Credits: 3.0
GPA/NGPA: GPA
Hours/Week:
 Lectures: 2
 Lab/Assignments: 3
Pre/Co-requisites: -

Learning Outcomes

At the end of the module the student will be able to:
1. Explain and assess various effects of the propagation channel on the received signal in a given application/propagation scenario
2. Use appropriate empirical and statistical channel models in design of a radio link in a given propagation environment
3. Explain relative merits and demerits of wireless communication technologies
4. Select a wireless technology or a combination of technologies to suit a given application
5. Plan a wireless communications system for a given environment in which it is to be deployed

Outline Syllabus

1. Overview of Wireless Communications (1 h): Evolution, applications and requirements, and technical challenges.
2. Signal Propagation over Wireless Channels (8 h): Propagation mechanisms, propagation loss: free-space path loss, ray tracing, empirical models, indoor propagation models, statistical description: large scale fading, combined pathloss and shadowing, outage probability, small scale fading, diversity reception, Doppler spectra and temporal channel variations, wideband channel characterization: WSSUS model, delay spread, coherent bandwidth, coherent time, and coherent distance, and channel models in wireless standards.
3. MIMO Communications (4 h): MIMO system model, MIMO channel models, space-time coding, Spatial multiplexing, and beamforming.
5. Wireless Network Standards (4 h): Wireless LANs, wireless MANs, short range wireless networks, standards, capabilities and applications, broadband wireless networks, and integration of different types of wireless networks
6. Wireless Sensor Networks (4 h): Introduction to sensor networks and applications, issues in sensor networks in comparison to conventional wireless networks, special design considerations in energy conservation, routing etc.
Module Code | EN4393 | Module Title | Information Theory
--- | --- | --- | ---
Credits | 3.0 | Hours/Week | Lectures
GPA/NGPA | GPA | Lab/Assignments | 2
Pre/Co – prerequisites | - | Lab/Assignments | 3

Learning Outcomes

At the end of the module the student will be able to:

1. Explain the operational meanings of and determine entropy, relative entropy and mutual information of random variables characterizing different types of information sources
2. Apply the fundamental concepts of information theory to determine the channel capacity of discrete memory-less channels
3. Apply the Shannon-Hartley theorem for information transmission on Gaussian channels to determine the channel capacity
4. Mathematically analyze the capacity of Gaussian channels and fading channels
5. Use the water-filling algorithm to determine the optimal power allocation for parallel Gaussian channels
6. Explain information theoretic results as the fundamental limits on the performance of communication systems

Outline Syllabus

1. **Introduction to information theory (1 h):** Historical background, introduction to information theory and its applications
2. **Information sources and measures (7 h):** Information sources: memory-less and Markov sources, information measures: entropy, relative entropy, and mutual information, chain rules, Jensen’s inequality, data processing inequality, Markov chains, and entropy rates
3. **Asymptotic equipartition property (2 h):** Asymptotic equipartition property theorem, consequences of the AEP, high-probability sets and typical set
4. **Capacity of discrete memory-less channels (8 h):** Definition of channel capacity, examples of channel capacity, symmetric channels, jointly typical sequences, symmetric channels, properties of channel capacity, channel coding theorem, and zero error coding
5. **Information measures for continuous random variables (2 h):** Definitions, differential entropy, joint and conditional differential entropy, relative entropy and mutual information, and properties
6. **Capacity of Gaussian channels (8 h):** Capacity of Gaussian channel, converse to the coding theorem, capacity of band-limited channels, capacity of parallel channels and capacity of fading channels
Module Code | EN4403
---|---
Module Title | Mobile Computing
Credits | 3.0
Hours/Week |
Lectures | 2
Lab/Assignments | 3
Pre/Co-requisites | GPA

Learning Outcomes

At the end of the module the student will be able to:

1. Define mobile computing, and discuss its applications, architectures, current status and future trends.
2. Discuss components of the mobile ecosystem and interactions among them.
3. Analyze strengths existing in the mobile computing ecosystem: enhancing computing with mobility, sensing, location, context etc.
4. Analyze challenges existing in the mobile computing ecosystem: energy, size, computing power, communications unreliability, security vulnerabilities.
5. Discuss how mobile applications leverage the strengths and overcome the challenges.

Outline Syllabus

1. **Introduction to Mobile Computing (4 h):** Definitions in use and their interpretation, different aspects, components and their congruence as an ecosystem, application areas, advantages, issues, challenges and solutions. Innovations and future trends.
2. **Protocols Supporting Mobility (3 h):** Mobile network layer protocols, mobile-IP, dynamic host configuration protocol (DHCP), mobile transport layer protocols, mobile-TCP, indirect-TCP, wireless application protocol (WAP), cross-layer interactions to support mobile computing. Cross-layer interactions to support mobile computing.
3. **Mobile Application Architecture (3 h):** Application models such as extended client-server, peer-to-peer model, wireless internet model, mobile agent model, messaging model, smart client model and cloud architectures. Comparison of architectures and their suitability for different applications. Architecture design guidelines. Guidelines for the design of presentation, business, data access and service layers. Guidelines for designing a communication approach for the devices and the infrastructure supporting them. Deployment choices, effect of deployment strategy on performance, security, and other quality attributes.
4. **Location (3 h):** Different technologies available for location detection, location detection methods, location-based services, location-aware mobile applications. Privacy issues related to location data.
5. **Context (3 h):** The definition of context, context categories, approaches to context awareness, use of context in mobile computing, design principles for context aware applications.
6. **Energy management in mobile computing (3 h):** Energy management strategies in mobile devices, sensors and communications.
7. **Interaction design in mobile computing (3 h):** Principles of interaction design, device limitations, favorable technology trends, examples.
8. **Mobile Cloud Computing (3 h):** Classification of mobile cloud computing categories: cloud of mobile devices as a service, cloud computing services/resources available for mobile devices.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4420</th>
<th>Module Title</th>
<th>Advanced Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments 3</td>
<td>Pre/Co – requisites EN1060 EN2510</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify and formulate signal processing problems in many engineering applications
2. Differentiate different optimality criteria in estimation, and design appropriate estimators for given applications
3. Discuss the analytical framework required for different estimation and detection approaches
4. Analyze multi rate signals and design such systems for a given application
5. Analyze the effect of finite word length on the designed filters
6. Perform rigorous technical/mathematical analysis on real world signal processing scenarios

Outline Syllabus

1. **Optimal parameter estimation (8 h):** Estimation and error functions, minimum variance unbiased estimation, least mean square/recursive least filters as optimal estimators, maximum likelihood estimators, Bayesian estimation leading to Weiner and Kalman filtering
2. **Statistical detection theory (6 h):** Neyman-Pearson theorem, minimum Bayes risk detector, generalized likelihood ratio test, asymptotic properties of different detectors
3. **Multi-rate signal processing (4 h):** Fundamentals of multi-rate signal processing, multistage implementation, maximally decimated filter banks, perfect reconstruction, introduction to wavelet transform
4. **Analysis of finite word length effects (2 h):** Quantization errors, filter robustness and stability
5. **Case study 1: Spectrum estimation of the ECG signal (2 h):** Overview of spectrum estimation methods (periodogram, Blackman – Turkey, windowing methods, ESPRIT, MUSIC), signal detection, muscle signal and noise estimation
6. **Case study 2: Distributed particle filter processing in sensor networks (2 h):** Likelihood function with sensor detection, distributed particle filter, quantization of received power, particle filter implementation
7. **Case study 3: State estimation of a Quadrotor platform (2 h):** System equation, linearization, extended Kalman filter development
8. **Case study 4: Applications of multi-rate signal processing and wavelets in digital communications (2 h):** CDMA receivers, multi-tone modulators, etc.
Module Code | EN4573
---|---
Module Title | Pattern Recognition and Machine Intelligence
Credits | 3.0
Hours/Week |
Lectures | 2
Lab/Assignments | 3
Pre/Co – requisites | EN2550
Learning Outcomes
At the end of the module the student will be able to:
1. Investigate the capabilities of classifiers and learning algorithms.
2. Recommend the best classifier to tackle real life pattern recognition problems.
3. Apply pattern recognition techniques in solving industry and research problems.
Outline Syllabus
1. **Introduction (4 h):** Basic concepts of pattern recognition, applications of pattern recognition in biomedical engineering, data mining, signal processing, computer security, natural language processing, and computer vision, probability distributions (binary variable, multinomial variable, Gaussians, the exponential family, non-parametric methods).
2. **Decision Trees (4 h):** Discrete attribute decision trees, continuous attribute decision trees, learning algorithms (ID3, C4.5, CART, Random Forest), cut point selection.
3. **Linear models for regression and classification (6 h):** Linear basis function model, the bias-variance decomposition, Bayesian linear regression, the evidence approximation, discriminant functions, probabilistic generative models, probabilistic discriminative models, the Laplace approximation, Bayesian logistic regression
4. **Kernel methods and sparse kernel machines (4 h):** Dual representations, constructing kernels, radial basis function networks, Gaussian process, maximum margin classifiers, relevance vector machines.
5. **Graphical methods (2 h):** Bayesian networks, Markov random fields, inference in graphical methods.
6. **Mixture models and EM (2 h):** k-means clustering, mixture of Gaussians.
7. **Sampling methods (2 h):** basic sampling algorithms, Markov chain Monte Carlo, Gibbs sampling.
8. **Continuous latent variables (2 h):** Principal component analysis, probabilistic PCA
9. **Sequential data (2 h):** Markov models, hidden Markov models, linear dynamical systems.
Module Code | EN4583
---|---
Module Title | Advances in Machine Vision
Credits | 3.0
GPA/NGPA | GPA
Hours/Week |
Lectures | 2
Lab/Assignments | 3
Pre/Co – requisites | EN2550, EN4553

Learning Outcomes

At the end of the module the student will be able to:

1. Identify open machine vision problems.
2. Comprehend current literature in machine vision.
3. Implement a recent algorithm in machine vision.
4. Propose novel solutions to open vision problems.

Outline Syllabus

1. **Introduction (4 h):** Doing a literature search, journals and conferences in vision, solved problems in vision, areas of current research interest in vision, data sets and grand challenges.
2. **Detection and recognition (6 h):** Features, generative vs. discriminative, bag-of-words model, part based model, scene understanding, big data in vision.
3. **Segmentation (6 h):** Segmentation algorithms, advances in segmentation, segmentation with recognition, co-segmentation.
4. **Reconstruction (6 h):** Reconstruction methods and applications, reconstruction from large collections.
5. **Activity recognition (6 h):** Video features, action recognition, activity recognition, behavior analysis for games.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4593</th>
<th>Module Title</th>
<th>Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>GPA/NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre/Co – requisites</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe a set of autonomous systems and their basic operations
2. Explain the major difficulties in designing autonomous systems, and how to overcome those
3. Design an intelligent system
4. Design an intelligent autonomous system and simulate it using software tools

Outline Syllabus

1. **Introduction to Autonomous Systems (6 h):** Introduction to autonomous systems, basic system design of autonomous systems, control algorithms and challenges
2. **Localization Navigation and control (10 h):** Sensor fusion, Kalman filter, occupancy grid, potential field method, GPS-INS navigation, IMU theory, Behaviour-based control, controller fusion, neural networks and fuzzy Logic based control techniques, control under modelling errors and uncertainties
3. **Intelligent systems (8 h):** Fuzzy systems and control, Neural Network based systems, Adaptive neuro-fuzzy systems (ANFIS), MATLAB implementation
4. **Design autonomous systems (4 h):** Supervisory control, task-resolved motion control, wave parameters in teleoperation, task planning,
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>GPA/NGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN4430</td>
<td>Analog IC Design</td>
<td>Lectures 2</td>
<td>3</td>
<td>GPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Explain the analog IC design concepts
2. Recognize the technical challenges in analog IC design
3. Demonstrate the proficiency in schematic and layout design
4. Design and analyze the analog IPs at schematic and layout stages

Outline Syllabus

1. **Analog IC design Concepts (8 h):** CMOS devices and its fabrication process, Analog design techniques, Analog IC design flow
2. **Circuit Simulations (4 h):** Define test modes, Simulation techniques
3. **Analog devices (8 h):** Schematic design and simulations of PLL, CDR, PoR, CLOCK modules
4. **Analog IP Development (4 h):** Analog IP design flow, Floorplan and IO Selection, Mixed signal design flow
5. **Design Layout (6 h):** Familiarize with tools required for layout, and layout verification, design related problems and fixes
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN4603</th>
<th>Module Title</th>
<th>Digital IC Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>3</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Explain the digital IC design concepts
2. Recognize the technical challenges in digital IC design
3. Demonstrate the proficiency in VLSI design tools widely used in industry
4. Design and analyze the digital VLSI circuits at various design stages from functional design, logic design, circuit design, to physical design

Outline Syllabus

1. **Digital design Concepts (10 h):** Introduction to digital IC design, Digital design basics, RTL to netlist mapping, synthesis, high fan-out synthesis, clock tree synthesis
2. **Design for Test (4 h):** Define test modes, DFT insertion techniques
3. **Backend Design (6 h):** Floor plan, place & route, layout verification, IO design
4. **IP Development (4 h):** IP design flow, IO definition, test methodologies, characterization of IPs
5. **RTL2GDS Flow (6 h):** Familiarize with tools required for synthesis, place & route, timing analysis, and layout verification, design related problems and fixes
Biomedical Engineering Specific Module Information
Following modules are offered under Biomedical Engineering

<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM1011</th>
<th>Module Title</th>
<th>Engineering in Medicine and Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.0</td>
<td>Lectures</td>
<td>1</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>NGPA</td>
<td>Lab/Assignments</td>
<td>3/1</td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td>Pre/Co – requisites</td>
<td>-</td>
</tr>
</tbody>
</table>

At the end of the module the student will be able to:

1. Recognize the historical perspective of biomedical engineering
2. Describe major areas of biomedical engineering
3. Discuss the moral and ethical issues in medical research and development

Outline Syllabus

1. **Biomedical Engineering: A historical perspective (2 hrs):** Evolution of the Modern Health Care System, Roles of Biomedical, Professional Status of Biomedical Engineering, Professional Societies, clinical engineering

2. **Biomechanics and related areas (3 hrs):** Mechanics of physiological systems, rehabilitation engineering and prosthetics.

3. **Chemical and material engineering applications in biology and medicine (3 hrs):** Transport phenomena, biomaterials, biotechnology and tissue engineering.

4. **Biomedical instrumentation (2 hrs):** Biosensors, instrumentations, biosignal processing, standards, and safety.

5. **ICT in medicine (2 hrs):** Physiological modeling and simulation, medical informatics, computational cell biology.

6. **Moral and ethical issues in medical research and development (2 hrs):** Morality and ethics, human experiments, and ethical issues biomedical activities.
Module Code | BM2011 | Module Title | Human Anatomy and Physiology I
---|---|---|---
Credits | 3.0 | Hours/Week | Lectures 3
GPA/NGPA | GPA | Lab/Assignments | -
| | | Pre/Co – requisites | -

Learning Outcomes

At the end of the module the student will be able to:

1. Describe the human body and its constituents
2. Explain the organization of the body
3. Discuss the communication needs of human body and related systems and their disorders

Outline Syllabus

1. **Introduction to the human body and the chemistry of life (3 hrs):**
2. **The cells, tissues and organization of the body (6 hrs):**
3. **Communication needs of the body (27 hrs):** Blood, cardiovascular system, lymphatic system, nervous system, special senses, and endocrine system.
Module Code: BM202
Module Title: Human Anatomy and Physiology II
Credits: 2.5
Hours/Week:
Lectures: 2
Lab/Assignments: 3/2
Pre/Co-requisites: BM2011

Learning Outcomes
At the end of the module the student will be able to:
1. Describe the intake of raw materials and elimination of waste in the human body and the disorders of the relevant physiological systems.
2. Explain the protection and survival methods of the human life and the disorders of the relevant physiological systems.

Outline Syllabus
1. Intake of raw materials and elimination of waste (14 hrs): Respiratory system, introduction to nutrition, digestive system, urinary system.
2. Protection and survival of the human body (12 hrs): Skin, resistance and immunity, musculoskeletal system, introduction to genetics, reproductive system.
Module Code | BM2101 | Module Title | Analysis of Physiological Systems
--- | --- | --- | ---
Credits | 3.0 | GPA/NGPA | GPA
Hours/Week | Lectures | Pre/Co – requisites | BM2011 BM2020
Lab/Assignments | 3/1 | GPA

Learning Outcomes

At the end of the module the student will be able to:

1. Compare engineering and biological systems using concepts from systems analysis
2. Construct analytic and computational models to analyze the regulation of the respiratory, cardiovascular and saccadic eye movement systems

Outline Syllabus

1. **Modeling strategies in physiology (4 hrs):** Hybrid approaches and model reduction, compartmental models, methods and tools for identification of physiologic systems.

3. **Cardiovascular models and control (8 hrs):** Chemoreflex regulation of respiration, cardiovascular mechanics, heart-rate variability, cardiac electrophysiology, pacemakers, and defibrillators.

4. **The fast eye movement control system (6 hrs):** Saccade characteristics, saccadic eye movement models, and saccade control mechanism.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM2900</th>
<th>Module Title</th>
<th>Field Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>NGPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>-</td>
<td>Pre/Co – requisites</td>
<td>-</td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Perceive the application of engineering in medicine.

Outline Syllabus

1. The course will be in the form of one or more field visits to places of interest to Biomedical Engineering graduates. These will include, but not limited to healthcare facilities, medical device design and manufacturing companies, and medical technology service providers.
Module Code | BM3121 | Module Title | Medical Imaging
---|---|---|---
Credits | 4.0 | Hours/Week | Lectures 3
GPA/NGPA | GPA | Pre/Co – requisites |

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss physics of how signals, from which images are formed, are obtained
2. Discriminate characteristics of different medical imaging modalities
3. Compare the effect of different imaging modalities on the human body
4. Interpret various parameters of medical images for measurements and analysis

Outline Syllabus

1. **X-ray imaging (4 hrs):** Projection x-ray principles and equipment, dose and exposure, attenuation coefficient, clinical x-ray procedures, digital radiography, x-ray computed tomography (CT)

2. **Magnetic resonance imaging (8 hrs):** Nuclear magnetic resonance (NMR), magnets and coils, spatial encoding, k-space, image quality, contrast manipulation, pulse sequences, functional MRI

3. **Ultrasound imaging (4 hrs):** Ultrasound principle, transducer, ultrasound-tissue interactions, acoustic impedance, a-mode imaging, time gain compensation (TGC), beamsteering, b-mode imaging, resolution and penetration, Doppler ultrasound.

4. **Nuclear medicine (4 hrs):** Radiopharmaceuticals, gamma camera, single photon emission computed tomography (SPECT), positron-emission tomography (PET)

5. **Optical and Thermal imaging (4 hrs):** Medical thermography, thermographic equipment, and optical coherent tomography (OCT).

6. **Image perception and quality (2 hrs):**
Module Code: BM3990 Module Title: Industrial Training

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours/Week</th>
<th>Lectures</th>
<th>Lab/Assignments</th>
<th>Pre/Co – requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify the differences between academic and industrial environments
2. Evaluate the training institutions relevance to engineering and engineering management
3. Adhere to engineering ethics, industrial safety standards and processes
4. Present the findings in a training report.

Outline Syllabus

1. **Induction**: This is an initial period to help the student in the transition from academic to industrial life. The students should meet a mentor to discuss the contents and the objectives of training. Students should also receive information about the training organization, its products or services and the terms and conditions of employment.

2. **Practical Skills**: During this period the student should receive instructions in the practical skills essential for future employment. It should also include an appreciation of the work of others in converting an engineering design into a final product (if appropriate).

3. **General Engineering Training**: In a large organization this should include an introduction to the work done in a number of departments. Under these circumstances, the student may eventually be working as a member of a team in the organization. The student should be made aware of the management and administration sectors of the organization.

4. **Directed Objective Training**: The major part of the training should have directed application to the activity which the student intends to follow after the training program (activities should be relevant to the major in which the student will be graduating in). At this stage the student should be encouraged to work on a real project and be given increasing responsibility for independent work to establish interest and confidence in his/her work.

This is an individual project, but supervisors can divide a complex project into sub areas to allow a group of students to collaborate. Students are evaluated individually.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM3180</th>
<th>Module Title</th>
<th>Scientific Communications for BME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.0</td>
<td>Lectures</td>
<td>1</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>3/1</td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Adopt widely accepted procedure in scientific research and publications
2. Communicate effectively in both oral and written formats

Outline Syllabus

1. **Scientific conduct and method (2 hrs):**
2. **Scientific writing (2 hrs):** Abstracts, project outlines, journal papers, grant proposals
3. **Oral and poster presentations (4 hrs):** Structure, function, content
4. **Communication with lay audiences (2 hrs):**
5. **Intellectual property and disclosures (2 hrs):**
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM3190</th>
<th>Module Title</th>
<th>Biostatistics and Ethics for BME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>NGPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>3/1</td>
<td>Pre/Co – requisites</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify issues in biomedical research ethics
2. Discuss the basics of setting up and running pre-clinical and clinical trials
3. Interpret experiment results using basic biostatistics

Outline Syllabus

1. **Ethics in health research:** International guidelines, good clinical practice, research ethics boards, research involving animals
2. **Basic biostatistics:** Fundamental concepts, common statistics
3. **Research integrity:** Collegiality and authorship, collaborative research, copyrights, licenses and patents
4. **Conducting clinical trials:** Types of clinical trials, the clinical protocol and trial design, institutional overhead, confidentiality and informed consent, data handling and record keeping, adverse events, audit and the audit trail, close out.
Module Code: BM4200
Module Title: Research Project

Learning Outcomes

At the end of the module the student will be able to:
1. Identify a problem of sufficient complexity in medicine that can be solved using the technologies learnt during the undergraduate career within a given time frame
2. Explain specific issues related to the chosen research topic based on how concepts have been built up through cross referencing of related research material
3. Analyze different approaches to solve the identified problem
4. Develop the solution using the selected approach
5. Evaluate the effectiveness of the solution
6. Justify the methods adopted in the solution
7. Prepare the undergraduate research thesis and a research paper for publication

Outline Syllabus

1. Investigation Stage: The student should be capable of independently referring to books, papers, academic literature and electronic resources to justify their choice of project. Conduct a literature survey in order to academically support any claims, technologies and methods used in the research project. This phase should also be used to determine if there are other methods that have been used to address the same or similar problems.

2. Implementation Stage: Once the preliminary investigation is carried out and a project of appropriate complexity is chosen, the next stage is to design and implement the research. Identifying the proper approach of implementation for completing the research successfully. At the implementation stage, the student is allowed to alter or modify the methodologies proposed in the previous phase depending on any new information available at this stage. Students are expected to design proper experiments for evaluating their research outcome against the ground truth and/or existing methods of similar work.

3. Presentation Phase: Placing the work in context and presenting it effectively is also an important part of the project. Effective presentation of the project material and a well structured thesis is expected for the satisfactory completion of the research project. The documentation and knowledge preservation includes a presentation, thesis DVD with structured information, a viva, and a draft paper for publication.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4111</th>
<th>Module Title</th>
<th>Medical Electronics & Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments 3/1</td>
<td>Pre/Co – requisites -</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe the operational principle of transducers and electrodes used in medical instrumentation
2. Explain the principles of operation of medical devices
3. Describe the use of therapeutic equipment in medicine
4. Analyze the effects of medical instruments on the human body

Outline Syllabus

1. **Measuring, Recording, and Monitoring Instruments (14 hrs):** Fundamentals of medical instrumentation, physiological transducers, monitoring systems, biomedical telemetry, physiological measurements, and patient safety.

2. **Therapeutic Equipment (10 hrs):** Cardiac pacemakers and defibrillators, dialysis systems, surgical instruments, life supporting devices and radiotherapy equipment.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4151</th>
<th>Module Title</th>
<th>Biosignal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td>Lectures</td>
<td>Pre/Co –</td>
<td>EN1060</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>requisites</td>
<td>EN2510</td>
</tr>
<tr>
<td></td>
<td>Lab/Assignments</td>
<td>3/1</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe the generating process of key biosignals.
2. Analyse different type of biosignals to get a deeper contextual understanding.
3. Demonstrate the understanding of biosignal representation techniques and their applicability to the analysis of biosignals.
4. Describe the effects of noise on biosignals and removal methods of such noise.
5. Demonstrate the ability to implement key algorithms on software and evaluate their performance.

Outline Syllabus

1. *Physiology and characteristics of biosignals (2hrs):* Introduction

2. *Electrocardiogram (6 hrs):* Cardiac electrophysiology, relation of electrocardiogram (ECG) components to cardiac events, clinical applications, ECG filtering and frequency analysis, QRS detection, P & T wave detection

3. *Effect of Noise on Medical Signal Processing (4 hrs):* Noise characteristics, noise reduction techniques, adaptive signal processing, LMS, RLS

4. *Electroencephalogram (6 hrs):* Source of EEG signals, measurement of EEG signals, frequency domain analysis of EEG, modeling of EEG signals (AR, ARMA), EEG artifacts, use of software tools to analyze EEG

5. *Signal Representation by Basis Functions (4 hrs):* Principal component analysis (PCA), independent component analysis (ICA)

6. *Time-frequency analysis of biosignals (4 hrs):* Sort-time Fourier transform (STFT), Wavelet denoising, Wavelet compression

7. *Oscillometric wave and speech signals (2 hrs):* Blood pressure measurements using the oscillometric wave and spectrographic analysis of speech signals.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4301</th>
<th>Module Title</th>
<th>Medical Image Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments 3/1</td>
<td>Pre/Co – requisites –</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss principles of image reconstruction and visualization
2. Discuss the advantages and limitations of imaging techniques and identify which technique is suitable to a given application.
3. Describe morphological image processing
4. Differentiate medical image segmentation algorithms
5. Discuss medical image registration techniques
6. Design an image processing application for medical images

Outline Syllabus

1. **Image reconstruction and visualization (4 hrs):** Fundamentals, image enhancement, popular software libraries, texture and motion analysis
2. **Morphological image processing (6 hrs):** Binary images, gray-scale images
3. **Medical image segmentation (4 hrs)**
 Region growing, watershed, level-set segmentation, deformable models
4. **Medical image registration and fusion (6 hrs):** Geometric features, similarity measures, modelling tissue deformation, finite element analysis, tissue deformation models
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4321</th>
<th>Module Title</th>
<th>Genomic Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lab/Assignments</td>
<td>3/1</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe the underlying processes of the genetic code of living organisms
2. Apply machine learning algorithms for processing genomic data
3. Develop new algorithms for novel problems in genomics

Outline Syllabus

1. **Introduction (2 hours)**
 Motivation and challenges for genomic signal processing, hereditary diseases, contagious disease control, influence of genes on cancer, heart disease, diabetes, drug efficacy etc. genetic engineering and phylogenetic analysis.

2. **The Genetic Code (4 hours)**
 DNA, RNA and proteins. DNA organization in prokaryotes, simple eukaryotes and higher eukaryotes. Viruses. DNA sequencing methods.

3. **DNA Sequence Alignment (4 hours)**
 Computational challenges, local, global and overlap alignment, alignment algorithms

4. **Use of Markov Chains, Hidden Markov Models and the Viterby Algorithm in GSP (6 hours)**

5. **Clustering Algorithms and Advanced Topics (4 hours)**
 Oligonucleotide clustering, haplotypes, information theoretic approaches, parallel processing and hardware implementation of GSP algorithms, other emerging topics.
Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4500</th>
<th>Module Title</th>
<th>Biomechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/Co – requisites</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe the fundamental areas of human biomechanics
2. Use mathematical models to describe human tissue, orthopaedic implants, limb replacements, and human motion
3. Apply principles of mechanics to biological systems of the human body

Outline Syllabus

1. **Human tissue and modelling of tissue (6 hrs):** Growth, structure and composition, mechanical properties, mathematical modelling of human tissue

3. **Materials in biomechanics (6 hrs):** Types of implants and orthopaedic interventions, principles behind materials selection, procedure followed when introducing new materials.

4. **Limb replacement, orthopaedic implants and materials used (6 hrs)**
 Types of limb replacements and orthotic devices. Existing technology in developing and developed.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4521</th>
<th>Module Title</th>
<th>Rehabilitation Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.5</td>
<td>Hours/Week</td>
<td>2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre/Co – requisites</td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Discuss methods used to substitute disabled functions of human body
2. Explain measurement tools and process used in rehabilitation engineering
3. Describe operation of prosthetic and artificial organs

Outline Syllabus

1. **Rehabilitation engineering technologies (12 hrs):** Principles of application, orthopaedic prosthetics and orthotics, wheeled mobility, externally powered and controlled orthotics and prosthetics, Sensory augmentation and substitution, Augmentative and alternative communication, Measurement tools and processes in rehabilitation engineering.

2. **Prosthetic devices and assist devices (6 hrs):** Cardiac prostheses, vascular grafts, artificial lungs and blood-gas exchange devices, orthopaedic devices, bone and cartilage grafts

3. **Common medical devices and support systems (10 hrs):** Artificial kidney, peritoneal dialysis equipment, liver support systems, artificial pancreas, tracheal and oesophageal replacement devices, artificial skin and dermal equivalents
Learning Outcomes

At the end of the module the student will be able to:

1. Apply the fundamental principals in material science and chemistry, and how they contribute to biomaterial development and performance.
2. Discuss different types of materials used in biomedical applications
3. Differentiate between artificial and bio-compatible materials
5. Describe preservation techniques used with biomaterials

Outline Syllabus

1. **Materials in biomedical applications (4 hrs):** Characteristics of material used in the human body (Metallic, ceramic, polymeric, composite, etc.)

2. **Bio-compatible materials (4 hrs):** Biodegradable polymeric biomaterials, tissue-derived biomaterials

3. **Tissue replacements (6 hrs):** Soft tissue, hard tissue

4. **Materials considered for implants (6 hrs):** physical characteristics and compatibility with the bio environment.

5. **Preservation techniques for biomaterials (4 hrs):**
<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM4620</th>
<th>Module Title</th>
<th>Biotechnology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.5</td>
<td>Hours/Week</td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab/Assignments</td>
<td>3/2</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:
1. Describe cell structures and their functions
2. Illustrate use of technology principles in vaccine production and gene therapy
3. Outline principles of tissue engineering

Outline Syllabus

1. **Cellular bioprocesses (8 hours):** Cell structure and their functions, cell membranes, energy and thermodynamics of cells, the genetic code, genetic engineering, enzymes, metabolomics, cell engineering

2. **Monoclonal antibodies and their engineered fragments (2 hours)**

3. **Gene therapy (2 hours)**

4. **Antisense technology (2 hours)**

5. **Vaccine production (2 hours)**

6. **Tissue engineering (2 hours):** Basic principles and considerations

<table>
<thead>
<tr>
<th>Module Code</th>
<th>BM2800</th>
<th>Module Title</th>
<th>Introduction to Biomedical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/Co – prerequisites</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify different biological systems and their functions
2. Construct simple engineering models for physiological systems
3. Analyze engineering solutions to physiological phenomena.

Outline Syllabus

1. **Overview of Biomedical Engineering (2 hrs)**: Divisions of biomedical engineering, activities of biomedical engineers, ethical issues in biomedical engineering.

2. **Overview of the Human Body (8 hrs)**: Brief description of anatomical and physiological divisions of the human body.

3. **Basic Principles and Concepts in Biomedical Engineering (4 hrs)**: Review of linear systems, time and frequency domain techniques.

5. **Models of Cardiovascular System and Related Medical Equipment (8 hrs)**: Chemoreflex regulation of respiration, cardiovascular mechanics, heart-rate variability, cardiac electrophysiology, pacemakers, and defibrillators.
External Module Information

Following modules are offered to students from external departments

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Hours/Week</th>
<th>Lectures</th>
<th>Lab/Assignments</th>
<th>Pre/Co – requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN1012</td>
<td>Electronic Devices and Circuits</td>
<td>2.0</td>
<td>GPA</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Identify “electrons” and “photons”, the two particles which are important in semiconductor electronics and optoelectronics
2. Design a simple dc power supply
3. Design a single stage amplifier and estimate the voltage & current gains and input & output impedances of the amplifier
4. Simulate a simple amplifier operation using suitable software
5. Construct a digital combinational circuits to perform a simple logical operation.

Outline Syllabus

1. Wave-particle duality of light and matter (1 h)
2. Energy levels and stimulated emission of radiation (2 h)
3. Schrödinger wave equation: Band theory of solids, E-k diagram, Fermi-Dirac statistics and Fermi Level (4 h)
4. Conduction in metals, Conduction in p-n junction devices, diffusion and junction capacitance of a p-n junction (3 h)
5. Diodes and their applications (4 h)
6. Transistor Amplifier; BJT and FET (6 h)
7. Logic circuits (6 h)
8. Logic families: DL, DTL, TTL (2 h)
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN1052</th>
<th>Module Title</th>
<th>Introduction to Telecommunication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours/Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/Co – Requisites</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab/Assignments</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Explain basic concepts related to communication systems
2. Differentiate between analog and digital communications principles
3. Describe basic aspects of a computer network
4. Differentiate between network topologies and types of networks
5. Discuss the operation of end user equipment in communications.

Outline Syllabus

1. **Introduction to Telecommunication Systems (2 h):** Historical developments and current trends
2. **Elementary Concepts in Telecommunications (6 h):** Digital and analog signals, Types of communication channels, Bandwidth and filtering, The effect of bandwidth and noise on signals, The radio spectrum and wave propagation, Modulation
3. **Transmission (4 h):** Guided and unguided transmission, multiplexing, Transmission networks, Multiplexing hierarchies for high speed communication networks
4. **Access Networks (5 h):** PSTN, DSL, Wireless local loop, Mobile
5. **Switching and Signaling (2 h):** Hierarchical networks, teletraffic concepts
6. **Networking Principles (5 h):** Topologies, Types of networks, layered architecture, Internetworking, Security including Public Key Encryption
7. **Telecommunication Devices (4 h):** The telephone instrument, The radio receiver, The TV receiver, Modems, cellular phones etc.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN1802</th>
<th>Module Title</th>
<th>Basic Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.0</td>
<td>Hours/Week</td>
<td>Lectures 2</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td></td>
<td></td>
<td>Pre/Co – requisites</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Describe basic principles of operation of semiconductor devices
2. Use diodes and transistors in simple electronic circuits
3. Use operational amplifiers in simple amplifier applications
4. Use logic gates to design simple combinational logic circuits.

Outline Syllabus

1. **Introduction (2 h):** Historical aspects, practical electronic systems, electronic industry, practical aspects of passive components, manufacturing electronic products, software tools
2. **Materials Used in Electronics (2 h):** Introduction to semiconductors and their basic properties, modern electronic materials
3. **Diodes, Diode Circuits and Applications (4 h):** Operation and characteristics of junction diode, zener diode, varactor diode and light emitting diode, rectification, clamping and limiting circuits, thyristors and controlled rectification
4. **Bipolar Junction Transistors (BJTs) and Circuits (4 h):** Operation and characteristics of BJT, use as a switch and as an amplifier, biasing schemes, amplifier configurations and parameters
5. **Field Effect Transistors (FETs) and Circuits (4 h):** Operation and characteristics of JFET, use as a switch and as an amplifier, comparison with BJTs.
6. **Integrated Circuit Amplifiers (4 h):** The need for integration, operational amplifiers, inverting amplifier configuration of op amp, monolithic audio IC amplifiers
7. **Logic Gates and Circuits (8 h):** Logic gates and Boolean algebra, minimization of logic expressions, combinational logic circuits, introduction to sequential logic circuits, design of simple logic circuits

http://www.ent.mrt.ac.lk
Module Code: EN2012
Module Title: Analog Electronics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours/Week</th>
<th>Lectures</th>
<th>Lab/Assignments</th>
<th>Pre/Co–requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2</td>
<td>3</td>
<td>3/2</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Examine the behavior of BJT and FET amplifiers in low, mid and high frequency ranges
2. Design transistor amplifiers to meet given specifications
3. Explain the differential amplifying concepts
4. Identify the functionality and applications of operational amplifier circuits
5. Identify different power amplifier classes and their characteristics
6. Perform power calculations for power amplifiers
7. Identify power electronic devices, their construction, operation and applications.

Outline Syllabus

1. **Analysis of Transistor Circuits (12 h):** Analysis of transistor circuits at DC, biasing circuits for BJTs and FETs, transistor as an amplifier, single-stage BJT/FET amplifier configurations, small-signal models, small signal mid-frequency equivalent circuits and analysis, low frequency and high frequency equivalent circuits of BJT/FET circuits, h-parameter model, pole zero analysis, Bode plots, frequency response of amplifiers, multistage amplifiers

2. **Differential Amplifiers (2 h):** The BJT differential pair, small-signal operation of the BJT differential amplifier, characteristics of a differential amplifier, differential amplifier with active load

3. **Operational Amplifiers (6 h):** Ideal opamp, negative feedback in opamp circuits, operational amplifier specifications, opamp applications, practical behavior of opamps, instrumentation amplifiers

4. **Power Amplifiers (4 h):** Definitions, applications and types of power amplifiers, power transistors, transistor power dissipation, amplifier classes and their efficiency, push-pull amplifiers, harmonic distortion and feedback, heat generation of power transistors and heat sinks

5. **Power Electronic Devices and Circuits (4 h):** Properties and applications of thyristors, triacs, diacs, uni-junction transistors, power MOSFETs, IGBTs and GTOs, power electronic circuits such as power controllers, CDi, protection and switching circuits
Module Code | EN2022 | Module Title | Digital Electronics
--- | --- | --- | ---
Credits | 2.5 | GPA/NGPA | GPA
Hours/Week | Lectures | Lab/Assignments | Pre/Co–requisites |
| | 2 | 3/2 | -

Learning Outcomes
At the end of the module the student will be able to:
1. Design combinational and sequential digital circuits
2. Differentiate characteristics of logic families
3. Compare usage of different logic families
4. Use programmable devices in digital circuits
5. Compare different types of analog-to-digital and digital-to-analog converters.

Outline Syllabus

1.	**Combinational and Sequential Logic Circuits (12 h)**	Five variable Karnaugh maps, Quine–McCluskey method, flip-flops, latches, counters, registers and other MSI devices, design of finite state machines
2.	**Logic Families (6 h)**	Ideal logic gates, logic levels and noise margins, dynamic response of logic gates, Analysis of logic families (fan-in, fan-out), diode logic, logic families (DTL, TTL, ECL, CMOS)
3.	**Programmable Devices (8 h)**	Programmable logic devices, PLAs, PALs, GALs, RAM and ROM chips, microcontrollers
4.	**Conversion Circuits (2 h)**	ADC, DAC, types dual slope, successive approximation etc., common chips available
Module Code: EN2852
Module Title: Applied Electronics
Credits: 2.0
Hours/Week: Lectures 1.5, Lab/Assignments 3/2
GPA/NGPA
Pre/Co-requisites:

Learning Outcomes

At the end of the module the student will be able to:

1. Identify characteristics of operational amplifiers
2. Use operational amplifiers in simple applications
3. Identify different types of sensors and their operation
4. Use sensors in simple applications
5. Use data converters in simple applications.

Outline Syllabus

1. **Operational Amplifiers (8 h):** Operation and characteristics, non-inverting and inverting configuration, applications: inverter, comparator, voltage follower (buffer), adder, subtractor, integrator, differentiator, oscillator
2. **Sensors and Transducers (8 h):** Performance characteristics of transducers: dynamic range, sensitivity, resolution, input/output impedance, useful frequency range, resistance transducers, opto-conductive transducers, capacitive transducers, inductive transducers, thermocouples, piezoelectric transducers
3. **Electronic Instrumentation Systems (8 h):** Analog-to-digital and digital-to-analog conversion, frequency ranges and bandwidth, signal reflection in cables, noise and interference, noise reduction methods
4. **Microcontrollers (4 h):** introduction, programming and applications of microcontrollers
<table>
<thead>
<tr>
<th>Module Code</th>
<th>EN2062</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2.5</td>
</tr>
<tr>
<td>GPA/NGPA</td>
<td>GPA</td>
</tr>
<tr>
<td>Hours/Week</td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Lab/Assignments</td>
</tr>
</tbody>
</table>

Learning Outcomes

At the end of the module the student will be able to:

1. Formulate time and frequency domain descriptions for basic continuous and discrete time signals
2. Analyze linear time invariant continuous and discrete time systems based on system characteristics
3. Analyze simple systems to determine their stability and response to various input signals
4. Use software as an analysis tool to investigate the operation of LTI systems.

Outline Syllabus

1. **Introduction to Signals and Systems (4 h):** Continuous and discrete signal models, building block signals (e.g., pulse, impulse etc), energy and power signals, use of software tools to represent signals, continuous and discrete system modeling using block diagrams, continuous and discrete system classification (e.g. causal/non causal, linear/nonlinear)

2. **Linear Time Invariant Systems (6 h):** Continuous and discrete time impulse, impulse response and convolution, differential and difference equation system representations, software tools for discrete and continuous time system analysis.

3. **Frequency Domain Analysis Methods (14 h):** Continuous and discrete time frequency response characteristics, Fourier series representation of periodic signals, properties of continuous and discrete time Fourier series, applications of Fourier series for power supply design, continuous time Fourier transform, discrete time Fourier transform, properties and applications of Fourier transforms, sampling and reconstruction, Laplace transforms and z-transforms.

4. **Stability Analysis (4 h):** Stability analysis of discrete and continuous time systems, pole-zero analysis of systems, BIBO stability.
Academic Standards and Administrative Processes for Students

Beginning-of-academic-year checklist

- Renew library registration.
- Pay registration and examination fees to the finance division.
- Update the student record book at the examinations division.

Beginning-of-semester checklist

- Select appropriate subjects for the semester according to the credit requirement
 - Check pre-requisites.
 - Check departmental GPA credit requirement.
 - Check non-departmental GPA credit requirement.
 - Check Non-GPA credit requirement.
- Register at LearnOrg for the selected subjects: lms.mrt.ac.lk
- Verify the accuracy of the confirmation form and submit to undergraduate studies division.
- Add/drop subjects within 2 weeks from the start of semester and finalize the semester subject selection.
- Collect previous semester results sheets from the examinations division.

Training (Internship)

- Search for possible training opportunities during level 3 semester 1
- Once an establishment is finalized document the necessary contract provided by NAITA
- After commencement of training, send a one page report of progress update to the training division once a month.
- Update the training diary regularly and keep it ready for inspection.
- Submit the training report after successful completion of the training.
- After completion of viva exams consult the training division to find out when the training certificate can be obtained.

Semester Coordinators

<table>
<thead>
<tr>
<th>Semester</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Dr. Ranga Rodrigo</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Tharaka Samarasinghe</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Jayathu Samarawickrama</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Chamira Edussooriya</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Peshala Jayasekara</td>
</tr>
<tr>
<td>7</td>
<td>Dr. Mevan Gunawardena</td>
</tr>
<tr>
<td>8</td>
<td>Dr. Anjula De Silva</td>
</tr>
</tbody>
</table>
Graduation Checklist

In case of an issue contact:

- Director/ Undergraduate Studies
 Ext: 3051

- SAR/ Examinations
 Ext: 1401

- Head of the Department
 Ext: 3301

- SAR/ Examinations
 Ext: 1401

Attach the returned cloak slip along with proof of due payments, if any, and collect the degree certificate.

http://www.ent.mrt.ac.lk
Research at ENTC

Research is any activity directed at finding solutions for unsolved problems in a global context or exploring an area which has not been looked at before. Such activities require dedication and commitment which strengthens one’s ability to do independent work. Thus, research is an important component of undergraduate education. The department has created a vibrant research culture, and you have an opportunity to engage in research projects from the inception of semester 2.

The department has five active research groups on Communications, Intelligent Systems, Machine Vision, Biomedical Engineering and Reconfigurable Digital Systems. Additionally, the department heavily promotes agricultural electronics based projects to improve the overall productivity of the agriculture sector. You are strongly encouraged to get involved with any of these research activities according to your interests. It is quite acceptable to work with different groups until you find the best match. You will find such work both stimulating and rewarding and you will undoubtedly realize that such an effort has a definite positive impact on your academic progress. Please refer to the research group web pages to see the latest information. During the final year, you will get an opportunity to engage in a research project spanning the entire year that gives academic credit.

Communication Research Group

The evolution towards ubiquitous (anytime, anywhere) communications and computing poses problems requiring novel ways of utilizing the frequency spectrum and the wireless channel. The group’s focus is on these aspects.

Ongoing Projects:

1. Iterative Receiver Algorithms for Relay-based Wireless Networks - Physical-layer network coding (PNC) is a promising technique to improve the capacity of relay-based wireless networks. Recently, joint channel-physical layer network coding (JCPNC), which uses channel coding hand in hand with PNC, has drawn increased interest as it offers reliable and spectrally efficient communication over relay-based networks. In most of the existing JCPNC schemes, at the relay, channel decoding and network decoding are carried out as two separate operations in a sequential manner. However, this approach of separate decoding may not yield the best performance as the soft information of the code bits is not exploited in network decoding. To this end, in this research project, we focus on developing low-complexity iterative receiver algorithms, which perform both network coding and channel decoding which jointly performs 100%.
2. Modelling of optical carrier recovery and phase synchronization scheme. Current optical fiber communication systems are deviating from intensity modulated transmission schemes to phase modulated transmission schemes due to various reasons such as impairment mitigation, data rate increment, etc. Therefore, this research focuses on extracting phase information from a degraded phase modulated signal, which will be useful in optical detection and regeneration schemes. This research is funded by National Research Council (NRC) research grants.

3. Polarization Insensitive, Phase sensitive amplifier for phase Regeneration - New standards have been released recently for increasing the data rates used in optical fiber core and metro networks operating at 100 Gbps. Basically 100 Gbps systems employ DP-QPSK schemes and in some of the 40 Gbps optical networks are operating in (D)PSK/QPSK schemes. Therefore, this research focuses on optical regenerating schemes which is capable of regenerating both amplitude and phase of a degraded phase modulated signal. This research is funded by National Research Council (NRC) research grants.

4. Hybrid cellular-networks - The low penetration of on-board devices supporting Vehicle-to-vehicle (V2V) communications hinders many possible applications in intelligent transportation systems. The research focuses on using communication capabilities of mobile phones to facilitate the process, and design low cost on-board units with much of the V2V communications processing handed over to the mobile phone. This research is funded by Senate Research Committee (SRC) long and medium term grants.

5. The detection of signals in noisy observations is one of the fundamental problems in statistical signal processing. This problem also arises in various other scientific disciplines such as radar, sonar, wireless communications and finance. In its most basic form, the presence of a signal amounts to rank one departure of the population covariance matrix from the identity. Equivalently, the largest eigenvalue of the population covariance matrix deviates from unity. Since we do not have access to the population covariance matrix, we focus on the largest eigenvalue of the sample covariance matrix (i.e., signal plus noise) formed with the noisy observations (say S). Moreover, if the noise co-variance matrix is unknown, then it is common to construct another sample covariance matrix from noise only observations (say R). Then it is natural to consider the behavior of the largest eigenvalue of F = R^{-1}S in order to infer the presence of a signal. Therefore, the main objective of this project is to investigate the asymptotic (i.e., high dimensional) behavior of the largest eigenvalue of F matrix when R and S are Wishart distributed.

Members:
Prof. Dileeka Dias
Eng. Kithsiri Samarasinghe
Dr. Chandika Wavegedara
Dr. Ruwan Weerasooriya
Dr. Prathapasinghe Dharmawansa
Dr. Tharaka Samarasinghe

Web: http://www.ent.mrt.ac.lk/crg
Intelligent Systems Research Group

Intelligent Systems Research Group (ISRG) engages in designing intelligent systems and their deployment in real-world applications. The target areas of ISRG are robotics, drones, control systems, teleoperation, visual servoing, and AI.

Ongoing Projects:

1. “Hornet”, the Vertical Take-off and Landing (VToL) winged drone project, funded by the National Research Council is nearing its successful completion. Hornet uses four vertical vertical thrusters in quadrotor configuration together with a horizontal pusher propeller. The four vertical thrusters are used to take off and land vertically, and the horizontal pusher propeller is used for cruise flying during the mission using wings. Hornet does not need a runway and it has long endurance due to winged flight in the mission.
2. “Quad²” is a four quadrotors in a quadrotor assembly. This novel design gives redundancy and robustness in view of actuator failures while reducing Electromagnetic Interference from the Electronic Speed Controllers and brushless DC motors on the electronic sensor system. Quad² is funded by the Senate Research Committee.
3. Drone-based agriculture project is now underway in which a drone is used for aerial monitoring of the green complexion of paddy over the season and clinically advise the farmer the best course of actions to improve the yield.
4. Autonomous drone landing, and package delivery using drones are also being tested as final year projects.
5. Vision based traffic monitoring project is successfully reaching its goal. In this project, photos taken are processed in realtime and determine the road occupancy using a trained neural network. Experiments conducted recently have given accurate results for implementation of the method for traffic control where the present static timing can be dynamically altered using vision-based traffic information.
6. Underwater Robotics: An underwater robot and its mother vehicle on water surface have been built recently with the intention of investigating underwater infrastructures such as dams and bridges. Initial tests of controllability, stability and appropriateness of these two vehicles have been already verified through tests in Bolgoda lake. At present, the communications between the two vehicles have been replaced with an underwater navigation link, with which new navigation algorithms will be developed. These algorithms will ensure that the untethered underwater vehicle stay close with the surface vehicle and perform the underwater task properly.
7. A solar-powered autonomous robotic surface vessel for aquatic surveillance and monitoring has been initiated. This work is expected to address several key issues including the increase in the number of illegal fishermen approaching Sri Lankan territory and the increase in illegal activities on local water bodies such as sand mining, garbage dumping and toxic material disposal.
8. Social Robotics: An autonomous, lightweight, two-wheeled self-balancing personal mobility vehicle is being developed as a solution for jobs that require exhausting, mundane and long walking hours such as security patrols, warehouse managers, umpires and exam invigilators. This system can also support elderly and disabled people in indoor navigation. A robot receptionist is also being developed to entertain the guests and visitors to the department. This robot is intended as a platform for advanced research on natural language processing (NLP), machine vision and human activity recognition.
9. Disaster Response: A semi-autonomous legged robot platform for disaster response related mapping, localization and search for victims using thermal camera has been initiated. The legged locomotion mechanism helps navigation on rough and challenging outdoor terrain in the event of natural disasters. Furthermore, a micro unmanned aerial vehicle (UAV) using sparse sensing technologies has been introduced to locate buried victims in an indoor collapsed building environment. The main focus in this project is to locate victims in a short period of time with minimal sensing.

Members:
Prof. Rohan Munasinghe
Dr. Jayathu Samarawickrama
Dr. Peshala Jayasekara

Labs:
Intelligent Machines Laboratory
Unmanned Aerial Vehicle Research Laboratory
Underwater Vehicles Research Laboratory

Web: http://www.ent.mrt.ac.lk/research/isrg
Machine Vision Research Group

Making the computer see, as a human being would, is the goal of machine vision. This 40-year-old field of research has seen many success stories such as face detection in cameras, optical character recognition for checks, fingerprint matching, human-level object detection, autonomous desert driving, and breathtaking visual effects such as fly-around in the movie industry. However, the general computer vision problem is far from being solved. There are many areas which need substantial amount of work to be usefully changing the way we work. For example, autonomous urban driving using visual navigation, human behavior identification for surveillance and helping the elderly, combing visual recognition with other forms of information such as text, registering a tumor for image guided surgery and many other problems are far from being solved or need improved solutions. There is, then, much work to be done to make the machines see as we do. Machine Vision Group attempts to solve several such problems.

Projects:

1. **Activity Recognition**
 We have been able to recognize activities in sports and other videos. This was using gradient features like Histogram of Oriented Gradients (HOG) and optic flows. We have used deep networks for activity recognition using static and optic flow information and characterize what the contribution ratio is. Currently we work on activity detection in untrimmed videos, and natural language captioning and retrieval of videos.

2. **Real Scenes in Virtual Worlds**
 Reconstruction for augmented reality: We can use depth imaging devices, in particular Microsoft Kinect, and Ocululus Rift to place the person wearing the Ocululus Rift in the virtual 3-D scene perceived by the person. We were successful in using many images reconstructing using them and providing the reconstruction to create the scene in Ocululus Rift so that a computer game could be played in the virtual representation of the real environment.

3. **Handwritten Character Recognition with Very Small Datasets**
 As the deep learning techniques of handwritten character recognition needs a significant amount of labeled data, some languages cannot benefit from recent advances of character recognition. We solve this problem by introducing a technique of generating new training samples from the existing samples with realistic augmentations that reflect actual variations that are present in human hand writing.

Significant past projects:

1. Visual surveillance-based expressway management
2. Gait analysis using moving Kinect sensors
4. Vision-based car park automation and cashiers-less retail store automation using deep learning
5. Preoperative planning of liver resections

Some of the above research projects were funded by the National Research Council, National Science Foundation, and Senate Research Committee of the University of Moratwua.

Members:
Dr. Ranga Rodrigo
Dr. Ajith Pasqual
Dr. Nuwan Dayananda
Dr. Jayathu Samarawickrama

Web: http://www.ent.mrt.ac.lk/mvg
Biomedical Research Group

1. Gait Analysis using Inertial Measurement Units (IMU) sensors
This project continues on the success of the 2D gait analysis system developed in 2014 to capture the 3D motion in lower limb movement using IMU sensors. This system will be useful for clinicians to identify deviations from normal walking patterns and measure changes that are important from a rehabilitation point of view.

2. Upper Limb Motion Analysis Using Inertial Measurement Units (IMU) sensors
This project aims to develop a system for analyzing upper limb movement using IMU sensors that will enable cricket coaches to analyze bowling actions of players and detect illegal actions.

3. Objective Measurement of Immersion in AR/VR using Electroencephalogram (EEG)
Immersion is a measurement of the effectiveness of an AR/VR system as experienced by the user. This research project proposes a method to quantitatively measure immersion using EEG and analyses its feasibility. The proposed method consists of 4 components. First, EEG is used to obtain the mental state of users. Secondly, the relationship between these mental states and immersion is investigated. Thirdly, a model combining the first two stages is built. Finally this model is validated.

4. Development of a Tool for Analyzing Foot Biomechanics and Personalized Care
This project is funded by a Senate Research Committee (SRC) grant and aims to develop a tool for analyzing the biomechanics of the foot based on 3D, geometrically accurate models based on medical image data and finite element analysis to understand the internal stress state, in order to offer a personalized solution for better foot care.

5. Correlation of the Endothelial Function for Early Prediction of Vascular Diseases
Vascular diseases are mainly caused by the disfunctionality of the endothelium which is the inner most layer of blood vessels. This projects looks at developing a non-invasive method/device to study the endothelial function to be used clinically which could find evidence for early prediction of such vascular diseases.

6. Modelling of the Human Ejaculatory Ducts
The standard treatment for benign prostatic hyperplasia is transurethral resection of the prostate. The accuracy of this surgery can be enhanced by 3D modeling. The steps of duct modelling are: Image registration, segmentation and modelling. The transformation is calculated manually and intensity based rigid registration is used to register the captured cadaver images. An active contour model is then used to segment the prostate. A novel segmentation approach is under development with an enormous morphological challenge at hand.

7. Hearing Screening Through Auditory Evoked Potentials
Auditory neuropathy cannot be diagnosed through traditional hearing tests. Therefore, an evoked potential based method is used to assess hearing objectively. This project looks at developing a device for auditory stimulus delivery, data acquisition, data processing and decision making.

8. An Augmented Reality Surgical Simulator for Laparoscopic Cholecystectomy
Surgical simulators without force feedback do not give the user the real experience they get during laparoscopic procedures. Through this project, we model the top-tissue interaction forces and simulate haptic feedback added to the surgical simulator.

Members:
Dr. Nuwan Dayananda
Dr. Anjula de Silva
Dr. Pujitha Silva

Web: http://www.ent.mrt.ac.lk/bme
Reconfigurable Digital Systems
Research Group

The group focuses on two areas:
(a) Development of novel architectures for application specific processors, packet classification and routing.
(b) Efficient on-chip implementation of advanced algorithms that can exploit massive parallelism available at hardware level.

Development of IP Cores, which can be considered as building blocks for complex System on Chip (SoC) is given top priority.

Ongoing projects:
1. Application specific processors for video and networking
2. Hardware acceleration for cloud computing
3. Novel architectures for high speed packet classification and routing

Members:
Dr. Ajith Pasqual
Dr. Jayathu Samarawickrama
Dr. S. Thayaparan

Web: http://www.ent.mrt.ac.lk/rds

Postgraduate Taught Degrees

PG Dip/M.Sc in Electronics and Automation

This program has been especially designed to target practicing engineers in electronic and automation industries, in electronics, electronics technology and automation industry who wish to build and advance their careers in these fast-changing and challenging fields of study. This is a two year part-time degree program. The first year (3 semesters of 14 weeks each) consists of lectures conducted on weekends.
Web: www.ent.mrt.ac.lk/web/pg/ea

PG Dip/MSc in Telecommunications

This course has been developed specifically targeting engineers who wish to build and advance their careers in this fast-changing and challenging field of study. This is a two-year part-time degree program. The first year consists of lectures conducted on one weekday evening and weekends. The first year consists of 3 semesters, and candidates are expected to earn the required number of credits from the core and optional course modules during this period.
Web: http://www.ent.mrt.ac.lk/msc-telecom
E-Club

The E-Club is the official student association of the Department of Electronic and Telecommunication Engineering, University of Moratuwa. The club mainly focuses on creating competent and socially responsible electronic and telecommunication engineers for the country.

The Electronics Club, now commonly known as the E-Club was established two decades ago, and has gone from strength to strength over the years. Its vision is “serving humanity through electronics”.

Objectives of the E-Club

- Acting as a platform, where interaction between undergraduates and the industry is highly enabled, while exposing innovative and creative thinking capacity of undergraduates to the industry.
- Identifying current trends, technological development in the electronic and telecommunication industry and facilitating undergraduates to acquire necessary skills, and shaping their attitudes to become successful professional engineers.
- Contributing to the enhancement of the living standards of the underprivileged segments in the society.

Activities of the E-Club

A variety of activities are carried out by the E-Club, with the above objectives in mind while providing a platform for the undergraduates to develop their careers.

Undergraduate-Industry Interaction Activities

Specialists in the fields of technology and management are invited to share their knowledge and experience with the undergraduates and to provide their advice. Through these sessions the undergraduates are motivated to be aware of the industry expectations, so that the undergraduates can get prepared to fit into the world of work.

Workshops and Seminars

Consultants and project planners are invited periodically to hold workshops to give a picture of the role to be played by an engineer. Moreover, this provides a chance for our students to learn to interact and exchange ideas without hesitation and to learn to accept the views of experienced people. This event is also used to invite experts to present a new technology introduced in the country, so that students are made aware of the current trend.

E-Forum

E-forum is a common platform for the undergraduates, faculty, industry, government and other relevant institutes to discuss the common challenges faced by the fields of electronics and telecommunications. This caters to the requirements of gearing up to lead national development, exposing the skills and talents of undergraduates, strengthening the relationship with the industry, and creating awareness about the industry. The forum helps in sharing knowledge and experience in relevant fields of engineering, discussing the trends and new opportunities emerging in the outside industry, presenting final year projects, and recognizing the excellence of the undergraduates.
“Tronic” Premier League (TPL)
The most awaited sports extravaganza of the department, TPL, is held annually at the university grounds with the ENTC family. TPL is a friendly cricket encounter between all three batches of the department and the academic staff. The purpose of this event is to enhance the bond among department students while giving them the opportunity to enjoy life at the university.

“Tronic” Shuttle Fest
This badminton tournament is a novel event introduced to the event calendar of the E-Club since 2014 with the motive of developing the sportsmanship and soft skills of the engineering undergraduates in the department. Sports have been identified as a major factor that could help create a balanced personality.

Community Service Projects(CSR)
E-Care, the department’s main CSR activity is about helping the students in a school that can benefit from the knowledge and skills of university students. It is a fun-filled and educational encounter for both the undergraduates and the school students. Donating books, repairing computers, painting the school and sharing a meal are all part of the E-Care program.

Sri Lanka Robotics Challenge
The University of Moratuwa, being the country’s leading technological higher education institute, has been monumental in popularizing cutting-edge technology. This event is a gateway for all those interested in robotics and automation to unleash their talents in the field to a much versed audience and also in itself a gathering for the tech savvy youth to enhance their knowledge and gain outright experience. Alongside with the Department of Electronic and Telecommunication Engineering, It has been a key partner in organizing the Zonal Competition of the International Robotics Challenge (IRC), which is conducted as a part of the biggest Technology Festival of India, “TechFest”.

Athwala - Pay it Forward
This is a scholarship scheme initiated by the Electronic Club starting from this year onwards with the intention of providing financial aid exclusively for the undergraduates of the department who are in need. The benefactors of the funds would be the ENTC Alumni who have eagerly joined hands with the E-Club for this noble cause.

Through this initiation, the E-Club expects that the financial barriers will not limit the odyssey beyond excellence of our undergraduates. Athwala will help the brilliant minds of the department to perform better in their academic career while engaging in extra-curricular activities.

This brings out another perspective for the brotherhood of the ENTC family by enhancing the friendship between the ENTC Alumni and the present undergraduates. We at E-Club, believe that the future generations will understand the duty towards their alma-mater through this project.
Awards Available for Students

Gold Medal donated by the Ceylon Electricity Board

Awarded to the electronic and telecommunication engineering graduate who has obtained the highest overall grade point average of 3.8 or above at the B.Sc. Engineering degree examinations.

Gold Medal donated by Technomedics International (Pvt) Ltd.

Awarded to the biomedical engineering graduate who has obtained the highest overall grade point average of 3.8 or above at the B.Sc. Engineering degree examinations.

Prof. O.P. Kulashethra Award

For electrical engineering, or electronic and telecommunication engineering graduate who has obtained the highest grade point average of 3.7 or above, computed by taking into consideration grades obtained for courses conducted by the electrical engineering, and electronics & telecommunication engineering departments in the B.Sc. Engineering degree course at level 2, 3, and 4.

Sri Lanka Telecom Scholarship

For the B.Sc. level 4 student in electronic & telecommunication engineering who has obtained the highest grade point average of 3.7 or above considering all subjects offered at level 2 and 3.

Prof. K.K.Y.W. Perera Award

Electronic & telecommunication engineering graduate who has obtained the highest grade point average of 3.7 or above considering all subjects offered at level 4.

Vidya Jyothi Professor Dayantha S Wijeyesekera Award

Awarded for the most outstanding graduate of the year who is a versatile graduate of the University of Moratuwa of proven academic standing with a GPA exceeding 3.7 (or First Class honours); who has been recognized as a leader and held in high esteem by other students; and has made a significant contribution through participation and service to the university and community.
Manamperi Award - Sri Lanka Association for the Advancement of Science

Awarded annually to the best undergraduate research engineering project carried out at a faculty of engineering in a Sri Lankan university. This award is open to students who have submitted their undergraduate engineering project to a Sri Lankan university within the academic year in consideration. A duly completed application along with a project report not exceeding 1500 words should be submitted to the SLAAS by the students themselves who wish to qualify for this award.

Migara Ranatunga Trust Award

This is awarded to the high achievers of level 3 industrial training module at the Annual sessions of IESL. The results of the evaluations done by the university training division will be submitted to the IESL, where a few undergraduates would be recognized as high achievers in the compulsory industrial training module in the engineering undergraduate program.

LSS Award

LSS award is given to final year undergraduates specializing in Electronic & Telecommunication Engineering. ‘LSS’ stands for Leadership, Scholarship and Service. Exemplary character, responsible leadership, service in campus or community life, superior scholarship and intelligence, genuine fellowship, and loyalty to democratic ideals are indispensable qualifications for the LSS award. The award winners will belong to the ‘LSS honour Society’. Membership of the ‘LSS honour society’ will be a mark of the highest distinction. Award winners are selected on the basis of merit.
The main focus of the department of Electronic and Telecommunication Engineering is and always has been to produce well balanced Engineers, encouraging students to actively engage in constructive extracurricular activities amidst excelling in academics. Some of those extracurricular endeavors are even treated as traditions in the department and has become an integral part of the student life at the department. These ultimately differentiated a graduate from our department as a unique individual among others.

Recommendation Criteria

- Active participation in the events organized by the E-Club such as E-Care, E-Forum and Expose exhibition
- Active participation as a committee member of the Expose exhibition
- Proper maintenance and administration of the final year projects handed down from the previous batches to be presented at the department
- Voluntary community work outside the university with valid commendations
- Taking up duties as the field representative
- Serving as a visiting instructor during the final year of undergraduate studies
- Serving as a visiting instructor for short courses and training programs
- Representing the department in the inter-department sports activities
- Involvement in voluntary undergraduate projects with staff members
- Supporting staff in extracurricular activities that bring reputation to the department
- Active support for workshops, symposiums and seminars conducted by the department and university support staff in extracurricular activities that bring reputation to the department
- Participating in exhibition stalls representing the department
- Beneficial interaction with the industry
- Student publications in peer reviewed conferences and other research related publications
- Representing the department in prestigious national and international level competitions

It is the student’s responsibility to engage in the activities given below and the staff is aware of such engagements so that recommendation requests will be viewed positively. Please note that it is not a right of the student to receive a recommendation but a privilege afforded to them by the staff of the department.
LearnOrg and Moodle

This is a student academic administration system which primarily maintains student records and provides access to students as well as to the staff. At present the system allows students to register for new modules and manage the modules by providing Add/Drop facilities.

Web: lms.mrt.ac.lk

Moodle is a course management system through which distribution and submission of continuous assessments is done for courses. It is integrated with LearnOrg for authentication and enrolments. It gives students the experience of e-learning which in fact is the current trend in university education around the world.

Web: online.mrt.ac.lk

Webmail

ENTC Webmail System offers all registered students (undergraduate and postgraduate), technical and administrative staff as well as the academic staff a secure and convenient way of accessing their e-mails from anywhere in the world. It acts as the primary interface of information exchange with the outside environment to both ENTC students and the staff.

Web: www.ent.mrt.ac.lk/webmail

The alumni of the Department of Electronic and Telecommunication Engineering give their time, talent, and support to the department. The alumni engages with the department officially, through their respective organizations, and in personal capacity.

Official engagement of the alumni with the department is through the Department Industry Consultative Board (DICB). At the DICB meeting, the alumni offers suggestions for making the curriculum industry-relevant. Some have contributed being invited members of the Faculty of Engineering, and even at the University Council.

The alumni makes its wealth of experience and industry expertise freely available to the students through guest lectures. Current topics, special technical topics not in the curriculum, getting ready to face the challenges in the industry, and higher studies are some of the themes these talks addressed in the past. Along with the lectures, the alumni makes sure to bring support from their respective organizations to the students and the department. This is beneficial to the students, the department, and the organizations.

Support given to the department in the personal capacity of the alumni, particularly as batches of each year, is significant.
Alumni Support

Some facilities that our students enjoy are donations from the alumni. For example, the batch that entered in 2002 made the main lecture hall, ENTC1, air-conditioned and decorated it with curtains. The batch that entered in 2003 provided curtains to the analog and digital electronic laboratories. The alumni in the batch that joined in 2004 made the wooden stage in ENTC1.

The furniture and curtains in the conference room are from the batch that entered in 2005. Following the same path as their seniors, the batch that entered in 2006 fitted the PG seminar room with curtains to solve the long-standing problem of poor visibility of the writing boards.

Students of the batches that entered in 2008 and 2009 fully funded the refurbishment and air-conditioning of the two modern classrooms located on the topmost floor of the department.

The department is grateful to the generous alumni. The alumni frequents the department whenever there is a special function or a sports event. The head of the department invites the alumni to maintain this close relationship, which greatly benefits the department and the students. Thank you for the generous support.

If you wish to re-connect with the department or contribute, please contact the head of the department via head-entc@uom.lk
Achievements of ENTC Students

Industrial Application Society (IAS)
Myron Zucker 2017

The students of the Department of Electronic and Telecommunication Engineering, continued to display dominance in the robotics arena for the past few years. The Myron Zucker undergraduate student contest is an international robotic competition organized by IEEE Industrial Application Society (IAS) for all IEEE undergraduate students around the world. Jathushan Rajasekaram from ENTC represented Sri Lanka at the Myron Zucker Students Design Contest in 2017 and emerged victorious while Vinoj Jayasundara secured the second place in the Myron Zucker Students University of Moratuwa team named “RA-ZOR” secured the runners-up at IRC 2016. The winning team composed of Lochana Mendis, Vinoj Jayasundara, Nuwan Tharaka, Thileapan Beniel and Supun Madusanka.

Sri Lanka Robotics Challenge (SLRC) 2017

Sri Lanka Robotics Challenge (SLRC) organized by University of Moratuwa, is one of the highly recognized robotics competitions in Sri Lanka. The University of Moratuwa team was able to secure the first place in the 2017 competition. The winning team comprised of Kithmin Wickramasinghe, Govindu Dilshan, Samith Ashan, Hiran Perera, and Iresh Jayawardana.

The same team was selected for the finals in Student Robotics Demonstration Contest 2018 organized by IEEE Industrial Application Society (IAS), which is to be held in September 2018 at Portland, USA.

International Robotics Challenge (IRC) 2016

The International Robotics Challenge (IRC) organized by IIT Bombay, is an annual robotics competition open to all undergraduate students.
Competitions Available for ENTC Students

IESL RoboGames
The Institution of Engineers, Sri Lanka, in its efforts to promote Engineering, Science and Technology, organizes the annual Robotic competition which will be held during the National Engineering Exhibition “Techno”. This is held under the categories of Junior, Undergraduate, Senior and Professional levels. Web: www.iesl.lk/robogames

IEEE Maker Fair 2017
A team from the University of Moratuwa was able to emerge victorious in IEEE Maker Fair 2017 held at Vardaman college of engineering, Hyderabad, India, for their exhibit “Life Saving Drone”. For this competition more than 100 teams from 10 countries including India, Nepal and Malaysia participated. The winning team comprised of Insaf Ismath, Janith Kalpa, Ama Kalpani and Samith Ashan.

Techfest iNexus
Techfest iNexus is a platform for the world’s best in robotics to perform at one stage, one level and for one prize, to be crowned as the best in the world in collaboration with the annual Techfest exhibition held at IIT Bombay. iNexus became the world’s first college festival to breach its country’s boundaries and hold a truly international college robotics competition. In its maiden year the University of Moratuwa had the honor of hosting the Techfest iNexus competition. The competition is open to both undergraduate and graduate students, and conducted on a theme presented uniquely each year. Web: www.techfest.org

Google I/O Extended Sri Lanka 2017
Google I/O Extended Sri Lanka, organized parallel to the Google I/O annual conference, was held in May 2017. The ENTC team, comprised of Insaf Ismath, Tharindu Suraj and Samith Ashan, secured the 1st Runners-up in the Chromium Collision Battle of the Bots competition hosted by Dialog and Ideamart.
Robot Design and Competition

This event is organized by the Department of Electronic and Telecommunication Engineering under the guidance of Prof. Rohan Munasinghe as a part of the elective credit course EN2532 Robot Design and Competition, where students are required to build a robot to achieve a given task. This is an internal event open only to the students of the ICT batch. Web: www.ent.mrt.ac.lk/~rohan/teaching/EN2060/

IESL- UIY

Undergraduate Inventor of the Year is a competition held annually, sponsored by IESL. There are three main purposes of this competition. Those are

- to encourage and stimulate interest in undergraduate invention in the field of engineering,
- to provide and opportunity for engineering undergraduates to organize and present their original inventions both orally and via a poster
- to provide venue for networking within Sri Lanka engineering undergraduates as well as members of industry and academia.

Web: www.iesl.lk/IESL.UIY

Mofilms Competition (Sri Lanka Telecom Mobitel)

MOFILMS are short films typically dedicated to raising awareness of current social issues in a fast paced, informative, humorous, balanced, but forceful fashion. The short films are played-back on mobile devices, now considered the fourth medium of entertainment following Cinema, TV and the computer. At this year’s highlight of the mobile industry calendar, the 2009 MobileWorld Congress, Mobitel scooped the prize for the best operator in the MOFILM 2009 awards, and the CEO of Mobitel especially thanked the contribution of the ENTC Department students for the enthusiasm shown towards the competition. This is done in collaboration with the Architecture Faculty for theme assistance and CIT for technical assistance.

National Best Quality Software Award (NBQSA)

The National Best Quality Software Award (NBQSA) competition is an annual event organized by the British Computer Society Sri Lanka (BCSSL). The competition is open for sixteen categories of software ranging from Applications and Infrastructure Tools software to Media and Entertainment Applications Software. In this globally competitive era the competition serves to showcase and benchmark Sri Lankan ICT products. The competition has been conducted in Sri Lanka by the Sri Lankan section of the British Computer Society for the past seven years. Web: www.nbqsasrilanka.org
MIT-UoM Mobile Technologies Incubation Programme

This is a collaborative programme with the Massachusetts Institute of Technology (MIT) which was offered for the first time in June/July 2011. The objectives of this programme are:

- To infuse the spirit of entrepreneurship among students, specifically through innovations focused on mobile technologies.
- To provide necessary training on advanced mobile technologies for innovative services.
- To provide the framework to commercially deploy innovative mobile services.

This will be an intensive 8-week course conducted by instructors from MIT along with the assistance of UoM staff and industry leaders and entrepreneurs. The course will be available to a selected group of students with a good understanding of modern programming concepts and the spirit to innovate. The course will consist of brainstorming sessions for idea generation and fine-tuning, assistance with technical matters, business plan development, and establishing the necessary networks and contacts for the participants to launch their innovation as a commercial service. Competitions where financial and other valuable prizes will be offered to the winners is another component of this course.

AppZone Competition

App Zone Mobile application competition started on the 28th of September 2010 as a partnered project of Etisalat and hSenid. The AppZone competition is rewarding opportunity for the non professional Sri Lankan application developers to create, test and sell their own unique mobile applications.

Web: www.appzone.lk
The Dialog - UoM Mobile Communications Research Laboratory specializes in applied research in mobile telecommunication technologies & internet applications. The Laboratory is funded by Dialog Telecom PLC and harnesses the leading edge technical capabilities inherent to the company, its parent Axiata Group Berhad and the University of Moratuwa. This is the first fully industry-sponsored research laboratory to be established in a University in Sri Lanka, and the country’s first laboratory for research and development in mobile communications.

Among the achievements of the laboratory are, the National Best Quality Software Award - 2006, the National Science and Technology Award for Multidisciplinary Research and Development - 2006, finalist in the GSM Asia Mobile Innovation Awards - 2006, commendation at the GSM Global Mobile Awards 2007, and the National Science and Technology Award for Engineering Product Development - 2008.

The Disaster Early Warning Network (DEWN) pioneered by the laboratory in collaboration with Dialog and Microimage (Pvt.) Ltd. was launched in January 2009 and is now in operation in several regional locations of the Disaster Management Centre island-wide. A joint patent for the University of Moratuwa and Dialog was awarded recently for the Fleet Management System developed in the laboratory during 2005-2007.

Twenty research papers have been published based on the work carried out in the laboratory, and five M.Sc. degrees have been completed. One is in progress at the current time.

The laboratory has recently ventured into several new areas of applied research in mobile/wireless technologies such as wireless sensor network and the Internet of Things (IoT).

Director: Prof. (Mrs.) S. A. D. Dias
Ext. No.: 3320
e-mail: dileeka@ent.mrt.ac.lk

http://www.ent.mrt.ac.lk
The Zone24x7-University of Moratuwa Electronic Systems Research Laboratory is one of the two industry-sponsored research laboratories in the Department. Guided by the vision, “Global Research Locally”, the laboratory engages in carrying out cutting-edge world-class research.

The research carried out in the laboratory span the areas of electronic systems, embedded systems, biomedical instrumentation, and computer vision. In the area of electronic and embedded systems, researchers in the laboratory are working on implementing recent computer vision algorithms on field programmable gate array devices. The non-invasive glucose meter project aims at estimating the blood glucose level without requiring pricking and obtaining a blood sample. The lab has developed algorithms for vision-based automatic room recognition with applications in the consumer robots and surveillance.

The laboratory employs top graduates as researchers who demonstrate a high research potential. The researchers in the laboratory benefit from state-of-the-art equipment, high-quality work and research environment while receiving research advice from the Department’s faculty and Zone24x7 parent company’s expertise. Some research students choose to follow an M.Sc. program at the Department as well. Some of them have secured admission to the prestigious graduate schools such as Johns Hopkins University.

Zone24x7 Inc., the sponsor of the laboratory, is a leading provider of global technology innovation services, headquartered in San Jose, California. The company offers information technology products and services specialized in business process and technology rationalization. Zone24x7’s blue chip clients include Fortune 1000 customers, leading hardware manufacturers and leading customers from retail, healthcare, and government sectors. Founded in 2003, Zone24x7 has technology development and research centers in many locations in USA, Malaysia and Sri Lanka. By collaborating with this vibrant industry partner, Zone24x7-University of Moratuwa Electronic Systems Research Laboratory strives to highlight the presence of Sri Lanka on the map, by carrying out world-class research at the Department of Electronic and Telecommunication Engineering.

Director: Eng. A.T.L.K. Samarasinghe
Ext. No.: 3326
e-mail: kithsiri@ent.mrt.ac.lk
PREMIUM-International - University of Moratuwa Research and Development Laboratory for Biomedical Technologies

PREMIUM International - University of Moratuwa Research and Development Laboratory for Biomedical Technologies is the latest addition to the industry sponsored laboratories at the department premises. The Department of Electronic & Telecommunication Engineering has identified Biomedical Engineering as a key focus area and collaborated with the medical professionals in the development of novel medical product prototypes over the last few years. A major obstacle the department faced throughout has been the inability to commercialize the novel products developed despite their huge potential.

The lab focuses on medical product development for commercialization, addressing a long felt need of traversing the full path of product development and will be a place for creative medical professionals to take their innovative ideas from concepts to marketable products. Taking an idea to a useable product in the medical field is a long process that requires significant amount of testing in the actual environment and various types of approval. The laboratory will strive to comply with standards related to medical devices in developing products that can win the confidence of the medical community.

Sri Lanka, at present, does not manufacture any electronic based product for the local consumer market. The laboratory will provide a much needed boost to the local electronics manufacturing industry as it intends to go for a full scale manufacture of the developed prototypes with its industry partner Premium International.

The laboratory will also focus on applied research related to EEG, Tele-Medicine, Image guided therapy with the objective of developing futuristic products that will have a global appeal. In this process it will encourage all the research engineers to acquire postgraduate degrees based on the work done at the laboratory.

PREMIUM International - University of Moratuwa Research and Development Laboratory for Biomedical Technologies employs a few motivated and talented research engineers and accommodates interns for research and development activities every year. The department is expecting to promote the development of an industry in medical product manufacturing in Sri Lanka through activities of this laboratory.

Director: Dr. N.W.N. Daynanda
Ext. No.: 3349
e-mail: nuwan@ent.mrt.ac.lk

http://www.ent.mrt.ac.lk
Other Useful Information

Getting Help and Advice

The academic staff of the Department of Electronic & Telecommunication Engineering is always ready to provide necessary help and advice in academic work, project work and experimental work. They are also ready to provide the necessary help and guidance in other student problems. The support staff of the Department are also helpful to students in completing their academic related work.

Product Innovation Team

The product innovation team is mainly supposed to cater the industry needs for new products as well as promote the existing innovations from the Department to the industry; also increase the research skills of the students. The team works both for new designs and enhancing the previous innovations up to the product level and keeps connections with the industry for marketing them. The team is supposed to earn the income for the research expenses through the products and consists of the lecturers, instructors, post graduates and the undergraduates.

Having many completed and on-going products, the team is supposed to change the view of the industry towards the university from an academic entity to a more advanced and useful place. Also it is expected to make profits to the Department by introducing successful projects to the industry.

ENTC Alumni Association

The alumni association of the Department of Electronics and Telecommunications Engineering was established to provide a range of benefits to its members. Its main objective is to create a strong relationship between the Department and the graduates in the industry such that both the parties will be benefited. It is mainly supposed to offer helping hand to increase the facilities of the Department, increase the link between the Department and the industry and to help the past graduates to gain knowledge through the Department.

General Information

There are some services provided by the Department for the convenience of its students. One of them is the photo copy service, which is run by the E-Club which is placed on the lower ground floor of the Department building. You can take photo copies as well as computer printouts at a very low rate from there. Another facility provided by the Department is the lockers for students. Using that, students can keep what ever they don’t need to take home, safely.
IESL membership

“The Institute of Engineers, Sri Lanka (IESL) is the Primer professional body for Engineers in Sri Lanka. Its membership which has grown over the years presently stands at around 10,000 covering almost all disciplines of engineering. There are many attractions and benefits to those who join the IESL which is committed towards uplifting the status and the interests of the engineering profession in the country.”

The students can get the Student’s membership by providing proof of following an approved Engineering course and furnishing original and copy of the birth certificate. The application form can be found at the following link:

www.iesl.lk/docs/membership

To apply for the membership the students need to get the signatures from two corporate members of the IESL.

Corporate members of IESL in the department of Electronic and Telecommunication Engineering:

Prof. K.K.Y.W.Perera
Prof. J.A.K.S.Jayasinghe
Prof. S.A.D.Dias
Eng. A.T.L.K.Samarasinghe
Prof. S.R.Munasinghe

IET Membership

“The Institution of Engineering and Technology (IET) is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries and offices in Europe, North America and Asia-Pacific. The IET provides a global knowledge network to facilitate the exchange of ideas and promote the positive role of science, engineering and technology in the world.”

The students can apply for the membership under the category ‘Student or Apprentice’. The application process is mainly online based and the application forms are available in the following link:

www.theiet.org

IEEE Membership

Institute of Electrical and Electronics Engineers (IEEE) is the world’s largest professional association dedicated to advancing technological innovation and excellence for the benefit of humanity. IEEE and its members inspire a global community through IEEE’s highly cited publications, conferences, technology standards and professional and educational activities.

IEEE creates an environment where members collaborate on world-changing technologies from computing and sustainable energy systems, to aerospace, communications, robotics, healthcare and more. The strategic plan of IEEE is driven by an envisioned future that realizes the full potential of the role IEEE plays in advancing technology for humanity. More information about IEEE can be found at: www.ieee.org
Frequently Asked Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Contact Person</th>
<th>Where?</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do I register for the academic year?</td>
<td>SAR/Examinations (Ext. 1401)</td>
<td>Examinations Branch</td>
</tr>
<tr>
<td>How do I register for subjects?</td>
<td>Director/ Undergraduate Studies (Ext. 3051)</td>
<td>Undergraduate Office Sumanadasa Building</td>
</tr>
<tr>
<td>How do I find hostel accommodation?</td>
<td>Male/Female Sub-Wardens (Ext. 1850)</td>
<td>Hostel Office</td>
</tr>
<tr>
<td>How do I find addresses of private boarding places?</td>
<td>AR/ Welfare (Ext. 1831)</td>
<td>Welfare Office</td>
</tr>
<tr>
<td>Whom should I contact for bursary/ Mahapola scholarship</td>
<td>AR/ Welfare (Ext. 1831)</td>
<td>Welfare Office</td>
</tr>
<tr>
<td>How do I obtain bus/ train season tickets?</td>
<td>AR/ Welfare (Ext. 1831)</td>
<td>Welfare Office</td>
</tr>
<tr>
<td>What should I do if I fall ill?</td>
<td>University Medical Officer (Ext. 1810)</td>
<td>Medical Center</td>
</tr>
<tr>
<td>What should I do if I miss practical or continuous assessments?</td>
<td>Lecturer in Charge of Subject</td>
<td>Examinations Branch</td>
</tr>
<tr>
<td>What should I do if I miss an examination?</td>
<td>SAR/Examinations (Within 48 hours)* (Ext. 1401)</td>
<td>Examinations Branch</td>
</tr>
<tr>
<td>Whom should I contact for counseling matters?</td>
<td>Chief Student Counselor or Counselors</td>
<td>Counseling Office</td>
</tr>
<tr>
<td>Whom should I contact for security related issues?</td>
<td>Chief Security Officer (Ext. 1901)</td>
<td>Security Office</td>
</tr>
<tr>
<td>Whom should I contact for highly personal matters?</td>
<td>Professional Counselor (Ext. 1816)</td>
<td>L- Block</td>
</tr>
</tbody>
</table>