Vision for Automation

Ranga Rodrigo
Department of Electronic and Telecommunication Engineering
University of Moratuwa
Sri Lanka

ICIafS 2008 Vision for Automation Workshop

December 10, 2008
Outline

1. Introduction
2. Applications
3. Vision in Automation
4. Software Tools
5. Examples of State-of-the-Art
6. Summary
1. Introduction
2. Applications
3. Vision in Automation
4. Software Tools
5. Examples of State-of-the-Art
6. Summary
What Is Computer Vision?

The goal is the emulation of the visual capability of human beings using computers.
What Is Computer Vision?

- The goal is the emulation of the visual capability of human beings using computers.
- In other words, computer vision is making the machine see as we do!
What Is Computer Vision?

- The goal is the emulation of the visual capability of human beings using computers.
- In other words, computer vision is making the machine see as we do!
- It is challenging.
What Is Computer Vision?

The goal is the emulation of the visual capability of human beings using computers.

In other words, computer vision is making the machine see as we do!

It is challenging.

Steps:

1. Image acquisition
2. Image manipulation
3. Image understanding
4. Decision making
Main Driving Technologies

- Signal processing.
- Multiple view geometry [2].
- Optimization.
- Hardware and algorithms.
Outline

1. Introduction
2. Applications
3. Vision in Automation
4. Software Tools
5. Examples of State-of-the-Art
6. Summary
Applications

Automotive:
- Lane departure warning systems.
- Head tracking systems for drowsiness detection.
- Driver assistance systems.
- Reading automobile license plates, and traffic management.

Photography:
- In camera face detection [6], red eye removal, and other functions.
- Automatic panorama stitching [1].

1(From http://www.cs.ubc.ca/spider/lowe/vision.html)
Applications

- Movie and video (a very big industry):
 - Augmented reality.
 - Tracking objects in video or film and solving for 3-D motion to allow for precise augmentation with 3-D computer graphics.
 - Multiple cameras to precisely track tennis and cricket balls.
 - Human expression recognition.
 - Software for 3-D visualization for sports broadcasting and analysis.
 - Tracking consistent regions in video and insert virtual advertising.
 - Tracking for character animation.
 - Motion capture, camera tracking, panorama stitching, and building 3D models for movies.
Camera Tracking

Source: http://www.2d3.com/capability

Show 2d3 video.
Applications

- **Games:**
 - Tracking human gestures for playing games or interacting with computers.
 - Tracking the hand and body motions of players (to control the Sony Playstation).
 - Image-based rendering, vision for graphics.

- **General purpose:**
 - Inspection and localization tasks, people counting, biomedical, and security. etc.
 - Object recognition and navigation for mobile robotics, grocery retail, and recognition from cell phone cameras.
 - Laser-based 3D vision systems for use on the space shuttles and other applications.
 - Image retrieval based on content.
Applications

- **Industrial automation (a very big industry):**
 - Vision-guided robotics in the automotive industry.
 - Electronics inspection systems for component assembly.

- **Medical and biomedical (maturing):**
 - Vision to detect and track the pose of markers for surgical applications, needle insertion, and seed planting.
 - Teleoperations.
 - Quantitative analysis of medical imaging, including diagnosis such as cancer.

- **Security and biometrics (thriving):**
 - Intelligent video surveillance.
 - Biometric face, fingerprint, and iris recognition.
 - Behavior detection.
Minimal Invasive Surgery

Areas of Advancement

- Hardware.
- Image segmentation.
- 3-D reconstruction.
- Object detection.
- Navigation.
Areas of Advancement

- Hardware.
- Image segmentation.
- 3-D reconstruction.
- Object detection.
- Navigation.
- Scene understanding.
What's needed?
cameras
software
actuators
Cameras

- Camera, and a frame grabber.
- IEEE 1394 or USB cameras.
- Ethernet cameras.
Vision in Automation

Source: http://www.matrox.com/imaging/products/vio/home.cfm
Inspection

- Color
- Barcode scanning
- Character recognition
Inspection: Examples

- Defects in parts, measurement of size.
- Robotic bin picking.
- If each slot is filled in a carton of pills.
- Character recognition.
Visual Servoing

- Uses vision in the servo loop [3].
 - Dynamic look and move needs the accuracy of the vision sensor and robot end-effector.
 - Having visual feedback in the control loop increases the overall accuracy of the control loop.
Uses vision in the servo loop [3].
- Dynamic look and move needs the accuracy of the vision sensor and robot end-effector.
- Having visual feedback in the control loop increases the overall accuracy of the control loop.

Visual Servoing
Machine vision can provide closed-loop position control for a robot end-effector—this is referred to as visual servoing.
Visual Servoing—Camera Configuration

- End-effector mounted
- Fixed configuration
Servoing Architectures

- Is the control structure hierarchical, with the vision system providing set-points as input to the robot’s joint level controller, or does the visual controller directly compute the joint-level inputs?
- Is the error signal defined in 3-D (task space) coordinates, or directly in terms of image features?
Servoing Architectures

- Dynamic image-based look-and-move structure.
- Position-based (direct) visual servo structure.
- Image-based (direct) visual servo structure.
Dynamic Position-Based Look-and-Move Structure

Cartesian control law

Joint controllers and power amps

Pose estimation

Image feature extraction

$^c x_d$

$^c \hat{x}$

f

video
Dynamic Image-Based Look-and-Move Structure

Feature space control law

Joint controllers and power amps

Image feature extraction

fd → Feature space control law → Joint controllers and power amps

Δf → Image feature extraction

Video
Position-Based (Direct) Visual Servo Structure.
Image-Based (Direct) Visual Servo Structure.

- Feature space control law
- Power amps
- Image feature extraction
- Video
Outline

1. Introduction
2. Applications
3. Vision in Automation
4. Software Tools
5. Examples of State-of-the-Art
6. Summary
Software Tools

- Octave or Matlab.
- C or C++ with a library such as OpenCV.
Image Processing using Octave or Matlab

- Simple and quick.
- A lot of library functions.
- Interpreted.
Octave Examples

- Image reading and writing.
- Histograms.
- Filtering.
Image Processing using OpenCV

- Power of C++.
- Well coded.
OpenCV Examples

1. Image reading and writing.
2. Edge detection.
3. Template matching.
4. Capturing video.
Outline

1. Introduction
2. Applications
3. Vision in Automation
4. Software Tools
5. Examples of State-of-the-Art
6. Summary
Examples of State-of-the-Art

Segmentation Using Graph Cuts [5]
Examples of State-of-the-Art

Segmentation Using Graph Cuts [5]
Examples of State-of-the-Art

Segmentation Using Graph Cuts [5]
Examples of State-of-the-Art Segmentation Using Graph Cuts [5]
Can we obtain a 3-D view of a scene, given only a set of (2-D) images?
3-D Reconstruction

Can we obtain a 3-D view of a scene, given only a set of (2-D) images?
Yes. Using multiple view geometry, we can reconstruct a scene.
Show Leibe et al. video [4].
Examples of State-of-the-Art

Object Detection: Face Detection

[Images of face detection examples]
Navigation: Sanford’s Robot Stanley

Show video.
Conclusion

- Vision-based automation is promising.
Conclusion

- Vision-based automation is promising.
- Solutions are simple in a controlled environment.
Conclusion

- Vision-based automation is promising.
- Solutions are simple in a controlled environment.
- State-of-the-art is very interesting.
Thank you.

OpenCV examples, and Octave examples are here: http://www.ent.mrt.ac.lk/ ranga/publications.html

