Robot Sensors

Dr. Rohan Munasinghe
Department of Electronic and Telecommunication Engineering
University of Moratuwa

- Allow a robot to interact with its environment in a flexible, and intelligent manner
 - In contrast to preprogrammed operations (in an overwhelming majority of industrial applications)
- A robot that can see and feel is much easier to train and deploy to perform complex tasks
 - Adaptable to much wider variety of tasks
Robot sensor taxonomy

- **Internal sensors**
 - Position sensor
 - Velocity sensors
 - Torque and acceleration sensors

- **External sensors**
 - Tactile sensors
 - Force and torques sensors
 - Proximity sensors
 - Range sensors
 - Vision sensors
 - Others
Internal sensors
- Provide position, velocity, and acceleration as a continuous stream of feedback signals that possess an integral part of the control loop.

External sensors
- Provide information about the environment and the objects therein (for collision avoidance, etc.).
- Don’t come with the basic package. Can be bought and installed as optional sensors.

Sensor Characteristics

- Dynamic range
 - Minimum and maximum values of the input signal for which the sensor responds
- Response
 - Sensor should respond to the stimuli almost instantaneously
- Sensitivity
 - The change in sensor output for a unit change in input
- Linearity
 - Whether the sensor maintains same sensitivity within the entire dynamic range
- Other considerations
 - Sensor should not disturb the physical quantity it measures
 - Sensor should be suitable for the environment it is exposed
 - Sensor should be isolated from noise, and protected from physical damages
 - Size, cost, and ease of operation
Position Encoding

- Potentiometer
- Optical shaft encoder

Absolute Encoder

Parallel Data

No initialization needed
Relative Position, Direction of motion, and Initial Position

When the joint is brought to a home position, the z-phase pulse is generated for initializing the up-down counter.

Distinguishing clockwise and counter-clockwise rotations

Track A

Track B

Clockwise rotation

Counter-clockwise rotation

Track A is 90 degrees ahead of track B.

Track A is 90 degrees behind.

Phase ⇒ Direction of motion
Pulse count (and derivative) ⇒ position (and velocity)
Velocity Measurement Using an Encoder

Velocity \approx \text{Pulse Frequency}

The drawback of pulse frequency measurement

As the angular velocity gets slower, only a few pulses are observed in the fixed time interval:

discretization error increases.

A better alternative is to measure the interval between adjacent pulses t_{int}, and take the reciprocal for estimating the velocity.

$$\omega \propto \frac{1}{t_{\text{int}}}$$
Hybrid velocity counter

Measuring the time interval between adjacent pulses:
More accurate in slower speed

Indicates whether or not a contact has been made, while disregarding the magnitude of the contact force

Micro switches, limit switches

Counting the number of pulses in a fixed time interval:
More accurate in higher speed

Touch sensor

- Indicates whether or not a contact has been made, while disregarding the magnitude of the contact force
 - Micro switches, limit switches
Tactile array

- Matrix of force sensing elements
 - Presence of the object
 - Pressure distribution
 - Object shape, and orientation
 - Slipping information

Tactile Sensors

Tactile Pad

Electrodes

Conductive Rubber:
Media impregnated with conductive dopants

Other Methods:
- Capacitive
- Optical
- Piezoelectric
- Magneto-resistive
- Magneto-elastic

Force/Pressure P

Resistance R

-force/pressure P
For grasping, assembly tasks where control of contact force is essential

Wrist attachment is the most common
Proximity Sensor

- LED
- Photo Detector

- **Electrostatic sonar** transducer
- 0.9~35ft, 50~60kHz
- Emits ultrasonic ping and listen to the echo

 time of flight \(\times 0.5 \times \) sound speed = distance to obstacle

- **Problems**
 - False echoes
 - Sound speed changes on temperature and humidity

- **Receiving gain** = \(\frac{1}{vt^4} \)

Ultrasonic Range Sensor

- **Electrostatic sonar** transducer
- 0.9~35ft, 50~60kHz
- Emits ultrasonic ping and listen to the echo

 time of flight \(\times 0.5 \times \) sound speed = distance to obstacle

- **Problems**
 - False echoes
 - Sound speed changes on temperature and humidity

- **Receiving gain** = \(\frac{1}{vt^4} \)
- Internal resonances take 2.38ms to decay out. It is only after that echoes can be detected (min distance limit)

- At a distance, echo becomes too weak to be detected (max distance)

As frequency increases:
- beamwidth reduces
- attenuation increases

Beamwidth shouldn’t be too wide to hear false echoes. It shouldn’t be too narrow to miss a legitimate obstacle

Narrow beamwidth sensor + mechanical scanning.

\[
F = d_{33} \cdot q
\]

(Voltage) = proportional to (Displacement)